1
|
Sundheimer JK, Benzel J, Longuespée R, Burhenne J, Pfister SM, Maaß KK, Sauter M, Pajtler KW. Experimental Insights and Recommendations for Successfully Performing Cerebral Microdialysis With Hydrophobic Drug Candidates. Clin Transl Sci 2025; 18:e70226. [PMID: 40286321 PMCID: PMC12033007 DOI: 10.1111/cts.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Cerebral microdialysis in rodents represents a robust and versatile technique for quantifying the pharmacologically relevant unbound fraction of drugs in the brain. When this unbound fraction is simultaneously determined in plasma, it facilitates the calculation of the corresponding unbound plasma-to-brain partition coefficient (Kp,uu) for a given compound in vivo. This coefficient is critical for understanding the penetration and distribution of drugs across the blood-brain barrier (BBB). However, obtaining valid and accurate microdialysis data can be particularly challenging for hydrophobic drugs due to their pronounced non-specific interactions with the components of the microdialysis system. The present study reports the outcomes of comprehensive microdialysis investigations in rodents, focusing on three hydrophobic compounds: actinomycin D, selinexor, and ulixertinib. These compounds exhibited varying degrees of non-specific binding to the surfaces of the microdialysis apparatus, leading to low recovery rates and substantial carry-over effects. To diminish these limitations, strategies such as surface coating and the use of optimized materials were employed to enhance the reliability of the microdialysis system. To ensure the robustness and reproducibility of microdialysis-related research outcomes, our experimental findings were supplemented with a narrative literature review. This review encompassed keyword-driven PubMed-indexed publications on microdialysis from 1970 to 2024, providing a broader context for the challenges and solutions associated with the technique. By integrating empirical results with practical recommendations, this study offers a comprehensive resource aimed at advancing the application of cerebral microdialysis in preclinical drug development, particularly for compounds with challenging physicochemical properties.
Collapse
Affiliation(s)
- Julia K. Sundheimer
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Julia Benzel
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Rémi Longuespée
- Medical Faculty Heidelberg/Heidelberg University Hospital, Internal Medicine IX—Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
- Metabolic Crosstalk in CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jürgen Burhenne
- Medical Faculty Heidelberg/Heidelberg University Hospital, Internal Medicine IX—Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Kendra K. Maaß
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Max Sauter
- Medical Faculty Heidelberg/Heidelberg University Hospital, Internal Medicine IX—Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg UniversityHeidelbergGermany
| | - Kristian W. Pajtler
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Pediatric Hematology, Oncology and ImmunologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
2
|
Garbarino VR, Palavicini JP, Melendez J, Barthelemy NR, He Y, Kautz TF, Lopez-Cruzan M, Mathews JJ, Xu P, Zhang B, Saliba A, Ragi N, Sharma K, Mason D, Johnson S, Hendrix S, Craft S, Petersen RC, Espindola-Netto JM, Xue A, Tchkonia T, Kirkland JL, Salardini A, Musi N, Bateman RJ, Gonzales MM, Orr ME. Evaluation of exploratory fluid biomarkers from a phase 1 senolytic trial in mild Alzheimer's disease. Neurotherapeutics 2025:e00591. [PMID: 40274471 DOI: 10.1016/j.neurot.2025.e00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Senescent cell accumulation contributes to the progression of age-related disorders including Alzheimer's disease (AD). Clinical trials focused on cellular senescence are in early stages and have yet to establish reliable outcome measures reflecting senescent cell burden or response to senolytics, therapeutics that clear senescent cells. Results from the first open-label trial of senolytics, dasatinib plus quercetin (D + Q), in older adults (N = 5) with early AD demonstrated central nervous system penetration of dasatinib and favorable safety and tolerability. Herein, we present exploratory analyses of senescence and AD-associated analytes in blood, cerebrospinal fluid (CSF) and urine from this study in effort to guide biomarker development for future senolytic trials. Immunoassays, mass spectrometry and transcriptomics were performed and changes in analyte levels were assessed from baseline to post-treatment using paired t-tests. Targeted cytokine and chemokine analyses revealed increases in plasma fractalkine and MMP-7 and CSF IL-6 from baseline to post-treatment. Mass spectrometry indicated stable levels of amyloid β and tau proteins in CSF, unchanged urinary metabolites, and modest treatment-associated lipid profile changes. Targeted transcriptomic analysis of peripheral blood mononuclear cells indicated downregulation of inflammatory genes including FOS, FOSB, IL1β, IL8, JUN, JUNB, PTGS2. The levels and treatment responses of the analytes identified here may help inform trial design and outcomes for senolytic studies. Independent validation will be necessary to develop standardized biomarker panels across senolytic trials for AD. ClinicalTrials.gov: NCT04063124.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Justin Melendez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Nicolas R Barthelemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Julia J Mathews
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | - Suzanne Craft
- Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ailing Xue
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA.
| |
Collapse
|
3
|
Tu Z, Xi Y, Zhang Y, Jin P, Yang H, Li C, Zhang Z, Wang H, Hou S. Assessment of blood-brain barrier injury in hypertensive CSVD by 11.7TMR T1mapping and microvascular pathologic changes. Metab Brain Dis 2024; 40:66. [PMID: 39680228 DOI: 10.1007/s11011-024-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
We used spontaneously hypertensive rats (SHR) as a hypertensive cerebral small vessel disease (CSVD) model to quantify blood-brain barrier (BBB) disruption by 11.7TMR T1mapping and to investigate white matter lesions and microangiopathy in CSVD. Male SHR were used as a hypertensive CSVD animal model and normotensive Wistar-Kyoto rats (WKY) were used as a control model. After 18 weeks, the rats did the Morris water maze test were evaluated, blood-brain barrier (BBB) integrity were evaluated by using Bruker 11.7T MR T1 mapping. ITK-SNAP software was used to measure hippocampal volume. Then, pathological analysis was carried out on rats, myelin integrity, vascular permeability and microvessel density were assessed by immunohistochemistry. Our data showed that hypertensive CSVD model exhibited decreased memory function, BBB leakage could be detected differently in different brain regions, and T1 values of the hippocampus showed the greatest drop than other areas. Furthermore, the pathological changes in small vessels were more extensive, average optical density of myelin basic protein (MBP) in the white matter of SHR group was significantly reduced, moreover, VEGFR2 immunoreactivity scores (IRS) and CD34-assessed MVD in SHR group were significantly higher than WKY group. We find different parts of the brain tissues have different degrees of BBB leakage, hippocampal atrophy and hippocampal volume were decreased in hypertensive CSVD by using T1 Mapping. Loss of myelin integrity, vascular permeability increased and microangiopathy may contribute to hypertensive-related BBB functional deficits in CSVD model.
Collapse
Affiliation(s)
- Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yan Xi
- Department of Radiology, Shanghai TCM-Integrated Hospital, 230 Baoding Road, Shanghai, 200000, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Pengpen Jin
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201613, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 220 Handan Road, 200082, Shanghai, China.
| | - Shuangxing Hou
- Department of Neurology, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, 201613, Shanghai, China.
| |
Collapse
|
4
|
Elschot EP, Joore MA, Rouhl RPW, Lamberts RJ, Backes WH, Jansen JFA. The added value of risk assessment and subsequent targeted treatment for epileptic seizures after stroke: An early-HTA analysis. Epilepsy Behav 2024; 151:109594. [PMID: 38159505 DOI: 10.1016/j.yebeh.2023.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The development of post-stroke epilepsy (PSE) is related to a worse clinical outcome in stroke patients. Adding a biomarker to the clinical diagnostic process for the prediction of PSE may help to establish targeted and personalized treatment for high-risk patients, which could lead to improved patient outcomes. We assessed the added value of a risk assessment and subsequent targeted treatment by conducting an early Health Technology Assessment. METHODS Interviews were conducted with four relevant stakeholders in the field of PSE to obtain a realistic view of the current healthcare and their opinions on the potential value of a PSE risk assessment and subsequent targeted treatment. The consequences on quality of life and costs of current care of a hypothetical care pathway with perfect risk assessment were modeled based on information from a literature review and the input from the stakeholders. Subsequently, the maximum added value (the headroom) was calculated. Sensitivity analyses were performed to test the robustness of this result to variation in assumed input parameters, i.e. the accuracy of the risk assessment, the efficacy of anti-seizure medication (ASM), and the probability of patients expected to develop PSE. RESULTS All stakeholders considered the addition of a predictive biomarker for the risk assessment of PSE to be of value. The headroom amounted to €12,983. The sensitivity analyses demonstrated that the headroom remained beneficial when varying the accuracy of the risk assessment, the ASM efficacy, and the number of patients expected to develop PSE. DISCUSSION We showed that a risk assessment for PSE development is potentially valuable. This work demonstrates that it is worthwhile to undertake clinical studies to evaluate biomarkers for the prediction of patients at high risk for PSE and to assess the value of targeted prophylactic treatment.
Collapse
Affiliation(s)
- Elles P Elschot
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands; MHeNs School for Mental Health and Neuroscience, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands
| | - Manuela A Joore
- CAPHRI Care and Public Health Research Institute, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands; Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands
| | - Rob P W Rouhl
- MHeNs School for Mental Health and Neuroscience, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands; Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands
| | - Rob J Lamberts
- MHeNs School for Mental Health and Neuroscience, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands; MHeNs School for Mental Health and Neuroscience, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands; MHeNs School for Mental Health and Neuroscience, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Jin T, Zhang H, Liu X, Kong X, Makamure J, Chen Z, Alwalid O, Yao Z, Wang J. Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI. Eur Radiol 2021; 31:5595-5604. [PMID: 33847812 DOI: 10.1007/s00330-020-07625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the correlation between enhancement degrees of brain metastases on contrast-enhanced T2-fluid-attenuated inversion recovery (CE-T2 FLAIR) and vascular permeability parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS Thirty-nine patients with brain metastases were prospectively collected. They underwent non-enhanced T2 FLAIR, DCE-MRI, CE-T2 FLAIR, and contrast-enhanced three-dimensional brain volume imaging (CE-BRAVO). Quantitative parameters of DCE-MRI were evaluated for all lesions, which included volume transfer constant (Ktrans), rate constant (Kep), and fractional volume of the extracellular extravascular space (Ve). Contrast ratio (CR) and percentage increase (PI) values of all lesions on CE-T2 FLAIR were also measured. The tumor enhancement degree on CE-T2 FLAIR in relation to CE-BRAVO was visually classified as higher (group A), equal (group B), and lower (group C). RESULTS A total of 82 brain metastases were evaluated, including 31 in group A, 19 in group B, and 32 in group C. The Ktrans and Kep were negatively correlated with the CR (ρ = - 0.551, p < 0.001 and ρ = - 0.708, p < 0.001, respectively) and PI (ρ = - 0.511, p < 0.001 and ρ = - 0.621, p < 0.001, respectively). The Ktrans and Kep of group A were significantly lower than those of group C (both p < 0.001). No significant difference was found in Ve among the groups (p = 0.327). CONCLUSIONS The enhancement degree of brain metastases on CE-T2 FLAIR is negatively correlated with Ktrans and Kep values, which indicate that vascular permeability parameters may play an important role in explaining the difference in enhancement between CE-T2 FLAIR and CE-BRAVO. KEY POINTS • The enhancement degree on CE-T2 FLAIR was negatively correlated with Ktrans and Kep values. • The vascular permeability of brain metastasis accounted for the difference in enhancement degree between CE-T2 FLAIR and CE-BRAVO. • CE-T2 FLAIR is useful for detecting brain metastases with mild disruption of the blood-brain barrier.
Collapse
Affiliation(s)
- Teng Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Joyman Makamure
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziwen Chen
- Department of General Surgery, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Lauvsnes MB, Tjensvoll AB, Maroni SS, Kvivik I, Grimstad T, Greve OJ, Harboe E, Gøransson LG, Putterman C, Omdal R. The blood-brain barrier, TWEAK, and neuropsychiatric involvement in human systemic lupus erythematosus and primary Sjögren's syndrome. Lupus 2018; 27:2101-2111. [PMID: 30282561 DOI: 10.1177/0961203318804895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE A prevailing hypothesis for neuropsychiatric involvement in systemic lupus erythematosus (SLE) and primary Sjögren's syndrome is that brain reactive autoantibodies enter the brain through a disrupted blood-brain barrier. Our aim was to investigate whether TNF-like weak inducer of apoptosis (TWEAK) plays a role in cerebral involvement in human SLE and primary Sjögren's syndrome, and whether an impaired blood-brain barrier is a prerequisite for neuropsychiatric manifestations. METHODS TWEAK was measured in the cerebrospinal fluid and serum and compared with markers of blood-brain barrier permeability (Q-albumin and MRI contrast-enhanced lesions) and S100B, an astrocyte activation marker in 50 SLE and 52 primary Sjögren's syndrome patients. Furthermore, we estimated the general intrathecal B-cell activation (IgG index), measured anti-NR2 antibodies in cerebrospinal fluid, and explored whether these variables were associated with neuropsychiatric manifestations. RESULTS No associations were found between TWEAK in the cerebrospinal fluid or serum and neuropsychiatric manifestations in SLE nor in primary Sjögren's syndrome patients. Furthermore, no associations were found between neuropsychiatric manifestations and indicators of blood-brain barrier integrity or astroglial activity. Anti-NR2 antibodies were associated with impaired visuospatial processing (odds ratio 4.9, P = 0.03) and motor functioning (odds ratio 6.0, P = 0.006). CONCLUSION No clinical neuropsychiatric manifestations could be attributed to impaired integrity of the blood-brain barrier, or to TWEAK levels in cerebrospinal fluid or serum in either patient group. The TWEAK concentration was considerably higher in the cerebrospinal fluid than in blood, which indicates intrathecal production. We hypothesize that increased TWEAK and S100B result from immunological stress caused by brain-reactive antibodies produced by brain residing immune cells.
Collapse
Affiliation(s)
- M B Lauvsnes
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - A B Tjensvoll
- 2 Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - S S Maroni
- 3 Clinical Neuropsychology Unit, Stavanger University Hospital, Stavanger, Norway
| | - I Kvivik
- 4 Research Department, Stavanger University Hospital, Stavanger, Norway
| | - T Grimstad
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - O J Greve
- 5 Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - E Harboe
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - L G Gøransson
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.,6 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - C Putterman
- 7 Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, New York, USA
| | - R Omdal
- 1 Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway.,6 Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One 2017; 12:e0171558. [PMID: 28207745 PMCID: PMC5313141 DOI: 10.1371/journal.pone.0171558] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/22/2017] [Indexed: 11/29/2022] Open
Abstract
The dynamics of BBB permeability after AIS in humans are not well understood. In the present study we measured the evolution of BBB permeability after AIS in humans using MRI. Patients presenting to our institution with a diagnosis of AIS underwent a single dynamic contrast-enhanced MRI (DCE-MRI) sequence to measure BBB permeability during their initial workup. Forty-two patients were included in the final analysis. The patient sample underwent DCE-MRI at a mean time of 23.8hrs after the onset of AIS symptoms (range: 1.3–90.7hrs). At all time-points the BBB permeability within the infarct region of the brain as defined on DWI/ADC was higher compared to the homologous region of the contralateral hemisphere (p<0.005). BBB permeability, expressed as a ratio of infarct permeability to contralateral permeability, was greatest at 6-48hrs after the onset of AIS. Although the data was not acquired longitudinally, these findings suggest that the permeability of the BBB is continually elevated following AIS, which contradicts previous assertions that BBB permeability after AIS follows a biphasic course. Knowledge of BBB dynamics following AIS may provide insight into future treatments for AIS, especially BBB stabilizing agents.
Collapse
|
8
|
Sinharay S, Pagel MD. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:95-115. [PMID: 27049630 PMCID: PMC4911245 DOI: 10.1146/annurev-anchem-071015-041514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.
Collapse
Affiliation(s)
- Sanhita Sinharay
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85724;
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85724;
- Department of Medical Imaging, University of Arizona, Tucson, Arizona 85724;
| |
Collapse
|
9
|
Hyperthermic Laser Ablation of Recurrent Glioblastoma Leads to Temporary Disruption of the Peritumoral Blood Brain Barrier. PLoS One 2016; 11:e0148613. [PMID: 26910903 PMCID: PMC4766093 DOI: 10.1371/journal.pone.0148613] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Poor central nervous system penetration of cytotoxic drugs due to the blood brain barrier (BBB) is a major limiting factor in the treatment of brain tumors. Most recurrent glioblastomas (GBM) occur within the peritumoral region. In this study, we describe a hyperthemic method to induce temporary disruption of the peritumoral BBB that can potentially be used to enhance drug delivery. METHODS Twenty patients with probable recurrent GBM were enrolled in this study. Fourteen patients were evaluable. MRI-guided laser interstitial thermal therapy was applied to achieve both tumor cytoreduction and disruption of the peritumoral BBB. To determine the degree and timing of peritumoral BBB disruption, dynamic contrast-enhancement brain MRI was used to calculate the vascular transfer constant (Ktrans) in the peritumoral region as direct measures of BBB permeability before and after laser ablation. Serum levels of brain-specific enolase, also known as neuron-specific enolase, were also measured and used as an independent quantification of BBB disruption. RESULTS In all 14 evaluable patients, Ktrans levels peaked immediately post laser ablation, followed by a gradual decline over the following 4 weeks. Serum BSE concentrations increased shortly after laser ablation and peaked in 1-3 weeks before decreasing to baseline by 6 weeks. CONCLUSIONS The data from our pilot research support that disruption of the peritumoral BBB was induced by hyperthemia with the peak of high permeability occurring within 1-2 weeks after laser ablation and resolving by 4-6 weeks. This provides a therapeutic window of opportunity during which delivery of BBB-impermeant therapeutic agents may be enhanced. TRIAL REGISTRATION ClinicalTrials.gov NCT01851733.
Collapse
|
10
|
Jackson S, Anders NM, Mangraviti A, Wanjiku TM, Sankey EW, Liu A, Brem H, Tyler B, Rudek MA, Grossman SA. The effect of regadenoson-induced transient disruption of the blood-brain barrier on temozolomide delivery to normal rat brain. J Neurooncol 2015; 126:433-9. [PMID: 26626489 DOI: 10.1007/s11060-015-1998-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The blood-brain barrier (BBB) significantly reduces the delivery of many systemically administered agents to the central nervous system. Although temozolomide is the only chemotherapy to improve survival in patients with glioblastoma, its concentration in brain is only 20 % of that in blood. Regadenoson, an FDA approved adenosine receptor agonist used for cardiac stress testing, transiently disrupts rodent BBB allowing high molecular weight dextran (70 kD) to enter the brain. This study was conducted to determine if regadenoson could facilitate entry of temozolomide into normal rodent brain. Temozolomide (50 mg/kg) was administered by oral gavage to non-tumor bearing F344 rats. Two-thirds of the animals received a single dose of intravenous regadenoson 60-90 min later. All animals were sacrificed 120 or 360 min after temozolomide administration. Brain and plasma temozolomide concentrations were determined using HPLC/MS/MS. Brain temozolomide concentrations were significantly higher at 120 min when it was given with regadenoson versus alone (8.1 ± 2.7 and 5.1 ± 3.5 µg/g, P < 0.05). A similar trend was noted in brain:plasma ratios (0.45 ± 0.08 and 0.29 ± 0.09, P < 0.05). Brain concentrations and brain:plasma ratios were not significantly different 360 min after temozolomide administration. No differences were seen in plasma temozolomide concentrations with or without regadenoson. These results suggest co-administration of regadenoson with temozolomide results in 60% higher temozolomide levels in normal brain without affecting plasma concentrations. This novel approach to increasing intracranial concentrations of systemically administered agents has potential to improve the efficacy of chemotherapy in neuro-oncologic disorders.
Collapse
Affiliation(s)
- Sadhana Jackson
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| | - Nicole M Anders
- Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Antonella Mangraviti
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Teresia M Wanjiku
- Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Eric W Sankey
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Ann Liu
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Henry Brem
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA.,Departments of Ophthalmology, Oncology and Biomedical Engineering, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Betty Tyler
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
| | - Michelle A Rudek
- Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Stuart A Grossman
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA.
| |
Collapse
|
11
|
Merali Z, Wong T, Leung J, Gao MM, Mikulis D, Kassner A. Dynamic contrast-enhanced MRI and CT provide comparable measurement of blood-brain barrier permeability in a rodent stroke model. Magn Reson Imaging 2015; 33:1007-12. [PMID: 26117703 DOI: 10.1016/j.mri.2015.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/25/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022]
Abstract
In the current management of acute ischemic stroke (AIS), clinical criteria are used to estimate the risk of hemorrhagic transformation (HT), which is a devastating early complication. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computed tomography (DCE-CT) may serve as physiologically-based decision making tools to more reliably assess the risk of HT. Before these tools can be properly validated, the comparability of the blood-brain barrier (BBB) permeability measurements they generate should be assessed. Sixteen rats were subjected to a transient middle cerebral artery occlusion before successively undergoing DCE-CT and DCE-MRI at 24-hours. BBB permeability (K(trans)) values were generated from both modalities. A correlation of R=0.677 was found (p<0.01) and the resulting relationship was [DCE-CT=(0.610*DCE-MRI)+4.140]. A variance components analysis found the intra-rat coefficient of variation to be 0.384 and 0.258 for K(trans) values from DCE-MRI and DCE-CT respectively. Permeability measures from DCE-CT were 22% higher than those from DCE-MRI. The results of this study demonstrate for the first time comparability between DCE-CT and DCE-MRI in the assessment of AIS. These results may provide a foundation for future clinical trials making combined use of these modalities.
Collapse
Affiliation(s)
- Zamir Merali
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Teser Wong
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jackie Leung
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meah MingYang Gao
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Mikulis
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andrea Kassner
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Merali Z, Leung J, Mikulis D, Silver F, Kassner A. Longitudinal assessment of imatinib's effect on the blood-brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res 2015; 6:39-49. [PMID: 25146090 DOI: 10.1007/s12975-014-0358-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022]
Abstract
Acute ischemic stroke (AIS) often results in degeneration of the blood-brain barrier (BBB), which can lead to vasogenic edema and an increased risk of intracerebral hemorrhage. Imatinib is an agent that may be able to protect the BBB and reduce the risk of the harmful consequences of BBB degeneration. We sought to measure the effect of Imatinib on the BBB after experimental stroke longitudinally in vivo with permeability dynamic contrast-enhanced MRI. Ischemia/reperfusion injury was induced with a transient middle cerebral artery occlusion surgery. Rats were given Imatinib at 2 and 20 h after stroke onset. Post-assessment included neurologic functioning, MR imaging, Evans Blue extravasation, Western blot, and immunohistology assay. Imatinib protected the BBB by 24 h but failed to decrease BBB permeability at an earlier time-point. Imatinib also reduced infarct volume, edema, and improved neurologic functioning by 24 h. Rats treated with Imatinib also had a higher expression of the BBB structural protein Zona ocludens-1 and a reduction in nuclear factor-kappa beta (NF-κβ) activation. Imatinib is a promising agent to protect the BBB after AIS, but its effect on the BBB may not become prominent until 24 h after the onset of ischemia. This finding may help elucidate Imatinib's role in the clinical management of AIS and influence future study designs.
Collapse
Affiliation(s)
- Zamir Merali
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
13
|
Lee KM, Kim EJ, Jahng GH, Park BJ. Value of perfusion weighted magnetic resonance imaging in the diagnosis of supratentorial anaplastic astrocytoma. J Korean Neurosurg Soc 2014; 56:261-4. [PMID: 25368772 PMCID: PMC4217066 DOI: 10.3340/jkns.2014.56.3.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 11/27/2022] Open
Abstract
We report perfusion weighted imaging (PWI) findings of nonenhanced anaplastic astrocytoma in a 30-year-old woman. Brain magnetic resonance imaging showed a nonenhanced brain tumor with mild peritumoral edema on the right medial frontal lobe and right genu of corpus callosum, suggesting a low-grade glioma. However, PWI showed increased relative cerebral blood volume, relative cerebral blood flow, and permeability of nonenhanced brain tumor compared with contralateral normal brain parenchyma, suggesting a high-grade glioma. After surgery, final histopathological analysis revealed World Health Organization grade III anaplastic astrocytoma. This case demonstrates the importance of PWI for preoperative evaluation of nonenhanced brain tumors.
Collapse
Affiliation(s)
- Kyung Mi Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eui Jong Kim
- Department of Radiology, Kyung Hee University Hospital, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bong Jin Park
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
14
|
Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. INTERVENTIONAL NEUROLOGY 2014; 1:185-99. [PMID: 25187778 DOI: 10.1159/000353125] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite ongoing advances in stroke imaging and treatment, ischemic and hemorrhagic stroke continue to debilitate patients with devastating outcomes at both the personal and societal levels. While the ultimate goal of therapy in ischemic stroke is geared towards restoration of blood flow, even when mitigation of initial tissue hypoxia is successful, exacerbation of tissue injury may occur in the form of cell death, or alternatively, hemorrhagic transformation of reperfused tissue. Animal models have extensively demonstrated the concept of reperfusion injury at the molecular and cellular levels, yet no study has quantified this effect in stroke patients. These preclinical models have also demonstrated the success of a wide array of neuroprotective strategies at lessening the deleterious effects of reperfusion injury. Serial multimodal imaging may provide a framework for developing therapies for reperfusion injury.
Collapse
Affiliation(s)
- May Nour
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Calif., USA
| | - Fabien Scalzo
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Calif., USA
| | - David S Liebeskind
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Calif., USA
| |
Collapse
|
15
|
Assessment of irradiated brain metastases using dynamic contrast-enhanced magnetic resonance imaging. Neuroradiology 2014; 56:437-43. [PMID: 24652530 DOI: 10.1007/s00234-014-1344-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The purpose of this study was to evaluate the effect of stereotactic radiosurgery (SRS) on cerebral metastases using the transfer constant (K trans) assessed by dynamic contrast-enhanced (DCE) MRI. Furthermore, we aimed to evaluate the ability of K trans measurements to predict midterm tumor outcomes after SRS. METHODS The study received institutional review board approval, and informed consent was obtained from all subjects. Twenty-six adult patients with a total of 34 cerebral metastases underwent T1-weighted DCE MRI in a 1.5-T magnet at baseline (prior to SRS) and 4-8 weeks after treatment. Quantitative analysis of DCE MRI was performed by generating K trans parametric maps, and region-of-interest-based measurements were acquired for each metastasis. Conventional MRI was performed at least 16 weeks after SRS to assess midterm tumor outcome using volume variation. RESULTS The mean (±SD) K trans value was 0.13 ± 0.11 min(-1) at baseline and 0.08 ± 0.07 min(-1) after 4-8 weeks post-treatment (p < 0.001). The mean (±SD) total follow-up time was 7.9 ± 4.7 months. Seventeen patients (22 lesions) underwent midterm MRI. Of those, nine (41 %) lesions had progressed at the midterm follow-up. An increase in K trans after SRS was predictive of tumor progression (hazard ratio = 1.50; 95 % CI = 1.16-1.70, p < 0.001). An increase of 15 % in K trans showed a sensitivity of 78 % and a specificity of 85 % for the prediction of progression at midterm follow-up. CONCLUSION SRS was associated with a reduction of K trans values of the cerebral metastases in the early post-treatment period. Furthermore, K trans variation as assessed using DCE MRI may be helpful to predict midterm outcomes after SRS.
Collapse
|
16
|
van Vliet EA, Otte WM, Gorter JA, Dijkhuizen RM, Wadman WJ. Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study. Neurobiol Dis 2013; 63:74-84. [PMID: 24321435 DOI: 10.1016/j.nbd.2013.11.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) plays an important role in the homeostasis of the brain. BBB dysfunction has been implicated in the pathophysiology of various neurological disorders, including epilepsy in which it may contribute to disease progression. Precise understanding of BBB dynamics during epileptogenesis may be of importance for the assessment of future therapies, including BBB leakage blocking-agents. Longitudinal changes in BBB integrity can be studied with in vivo magnetic resonance imaging (MRI) in combination with paramagnetic contrast agents. Although this approach has shown to be suitable to detect major BBB leakage during the acute phase in experimental epilepsy models, so far no studies have provided information on dynamics of the extent of BBB leakage towards later phases. Therefore a sensitive and quantitative approach was used in the present study, involving fast T1 mapping (dynamic approach) during a steady-state infusion of gadobutrol, as well as pre- and post-contrast T1-weighted MRI (post-pre approach). This was applied in an experimental epilepsy model in which previous MRI studies failed to detect BBB leakage during epileptogenesis. Adult male Sprague-Dawley rats were injected with kainic acid to induce status epilepticus (SE). MRI experiments were performed before SE (control) and during the acute (1 day) and chronic epileptic phases (6 weeks after SE). BBB leakage was quantified by fast T1 mapping (Look-Locker gradient echo MRI) with a time resolution of 48 s from 5 min before up to 45 min after 20 min step-down infusion of 0.2M gadobutrol. In addition, T1-weighted MRI was acquired before and 45 min after infusion. MRI data were compared to post-mortem microscopic analysis using the BBB tracer fluorescein. Our MRI data showed BBB leakage, which was evident at 1 day and 6 weeks after SE in the hippocampus, entorhinal cortex, amygdala and piriform cortex. These findings were confirmed by microscopic analysis of fluorescein leakage. Furthermore, our MRI data revealed non-uniform BBB leakage throughout epileptogenesis. This study demonstrates BBB leakage in specific brain regions during epileptogenesis, which can be quantified using MRI. Therefore, MRI may be a valuable tool for experimental or clinical studies to elucidate the role of the BBB in epileptogenesis.
Collapse
Affiliation(s)
- E A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands.
| | - W M Otte
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Pediatric Neurology, Rudolf Magnus Institute of Neuroscience, University medical Center Utrecht, Utrecht, The Netherlands
| | - J A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| | - R M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W J Wadman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland, SEIN), Heemstede, The Netherlands
| |
Collapse
|
17
|
Yoshida T, Tamura T, Nagai Y, Ueda H, Awaya T, Shibata M, Kato T, Heike T. MRI gadolinium enhancement precedes neuroradiological findings in acute necrotizing encephalopathy. Brain Dev 2013; 35:921-4. [PMID: 23265619 DOI: 10.1016/j.braindev.2012.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 10/29/2012] [Accepted: 11/24/2012] [Indexed: 12/01/2022]
Abstract
We report a 2-year-old Japanese boy with acute necrotizing encephalopathy (ANE) triggered by human herpes virus-6, who presented insightful magnetic resonance imaging (MRI) findings. He was admitted due to impaired consciousness and a convulsion, 2 days after the onset of an upper respiratory infection. At admission, cranial MRI showed marked gadolinium enhancement at the bilateral thalami, brainstem and periventricular white matter without abnormal findings in noncontrast MRI sequences. On the following day, noncontrast computed tomography demonstrated homogeneous low-density lesions in the bilateral thalami and severe diffuse brain edema. The patient progressively deteriorated and died on the 18th day of admission. The pathogenesis of ANE remains mostly unknown, but it has been suggested that hypercytokinemia may play a major role. Overproduced cytokines cause vascular endothelial damage and alter the permeability of the vessel wall in the multiple organs, including the brain. The MRI findings in our case demonstrate that blood-brain barrier permeability was altered prior to the appearance of typical neuroradiological findings. This suggests that alteration of blood-brain barrier permeability is the first step in the development of the brain lesions in ANE, and supports the proposed mechanism whereby hypercytokinemia causes necrotic brain lesions. This is the first report demonstrating MRI gadolinium enhancement antecedent to typical neuroradiological findings in ANE.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cerebral ischemia manifests widely in patient symptoms. Along with the clinical examination, imaging serves as a powerful tool throughout the course of ischemia-from acute onset to evolution. A thorough understanding of imaging modalities, their strengths and their limitations, is essential for capitalizing on the benefit of this complementary source of information for understanding the mechanism of disease, making therapeutic decisions, and monitoring patient response over time.
Collapse
Affiliation(s)
- May Nour
- Department of Neurology, David Geffen School of Medicine, UCLA Stroke Center, University of California, RNRC, RM 4-126, Los Angeles, CA 90095, USA; Department of Radiology, Division of Interventional Neuroradiology, University of California, Los Angeles, 757 Westwood plaza Suite 2129, Los Angeles, CA 90095, USA
| | | |
Collapse
|
19
|
Willats L, Calamante F. The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR IN BIOMEDICINE 2013; 26:913-931. [PMID: 22782914 DOI: 10.1002/nbm.2833] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
Dynamic susceptibility contrast (DSC) MRI is the most commonly used MRI method to assess cerebral perfusion and other related haemodynamic parameters. Although the technique is well established and used routinely in clinical centres, there are still many problems that impede accurate perfusion quantification. In this review article, we present 39 steps which guide the reader through the theoretical principles, practical decisions, potential problems, current limitations and latest advances in DSC-MRI. The 39 steps span the collection, analysis and interpretation of DSC-MRI data, expounding issues and possibilities relating to the contrast agent, the acquisition of DSC-MRI data, data pre-processing, the contrast concentration-time course, the arterial input function, deconvolution, common perfusion parameters, post-processing possibilities, patient studies, absolute versus relative quantification and automated analysis methods.
Collapse
Affiliation(s)
- Lisa Willats
- Brain Research Institute, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Vic., 3084, Australia.
| | | |
Collapse
|
20
|
Danjo S, Ishihara Y, Watanabe M, Nakamura Y, Itoh K. Pentylentetrazole-induced loss of blood-brain barrier integrity involves excess nitric oxide generation by neuronal nitric oxide synthase. Brain Res 2013; 1530:44-53. [PMID: 23831997 DOI: 10.1016/j.brainres.2013.06.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022]
Abstract
Dysfunction of the blood-brain barrier (BBB) is one of the major pathophysiological consequences of epilepsy. The increase in the permeability caused by BBB failure is thought to contribute to the development of epileptic outcomes. We developed a method by which the BBB permeability can be demonstrated by gadolinium-enhanced T1 weighted imaging (GdET1WI). The present study examined the changes in the BBB permeability in mice with generalized convulsive seizures (GCS) induced by acute pentylentetrazole (PTZ) injection. At 15min after PTZ-induced GCS, the BBB temporarily leaks BBB-impermeable contrast agent into the parenchyma of the diencephalon, hippocampus and cerebral cortex in mice, and the loss of BBB integrity was gradually recovered by 24h. The temporary BBB failure is a critical link to the glutamatergic activities that occur following the injection of PTZ. PTZ activates the glutamatergic pathway via the NMDA receptor, then nitric oxide (NO) is generated by NMDA receptor-coupled neuronal NO synthase (nNOS). To examine the influence of nNOS-derived NO induced by PTZ on the increases of the BBB permeability, GdET1WI was performed using conventional nNOS gene-deficient mice with or without PTZ injection. The failure of the BBB induced by PTZ was completely protected by nNOS deficiency in the brain. These results suggest that nNOS-derived excess NO in the glutamatergic pathway plays a key role in the failure of the BBB during PTZ-induced GCS. The levels of NO synthetized by nNOS in the brain may represent an important target for the future development of drugs to protect the BBB.
Collapse
Key Words
- (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate
- (E)-(±)-2-amino-4-methyl-5-phospho no-3-pentenoic acid ethyl ester
- 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide
- AEDs
- AMPA
- BBB
- Blood–brain barrier
- CBF
- CBZ
- CGP39551
- CNS
- CSM
- DETC
- DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- DMSO
- GABA
- Gd
- Gd-HP-DO3A
- GdET1WI
- Generalized convulsive seizures
- MK-801
- MRI
- N,N-diethyldithiocarbamate Na
- N-methyl-d-aspartate
- NBQX
- NMDA
- NO
- Nitric oxide
- PTZ
- Pentylenetetrazole
- SI
- TBARS
- VPA
- antiepileptic drugs
- blood–brain barrier
- carbamazepine
- central nervous system
- cerebral blood flow
- cerebral smooth muscle
- dimethyl sulfoxide
- gadolinium
- gadolinium-1,4,7-tris(carbonylmethyl)-10-(2′-hydroxypropyl)-1,4,7,10-tetraazacyclo-dodecane
- gadolinium-enhanced T1 weighted image
- gamma-aminobutyric acid
- magnetic resonance imaging
- nNOS
- neuronal nitric oxide synthase
- nitric oxide
- pentylentetrazole
- signal intensities
- thiobarbituric acid-reactive substance
- valproic acid
Collapse
Affiliation(s)
- Sonoko Danjo
- Department of Neuropsychiatry, School of Medicine, Kagawa University, Kita, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
21
|
Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. J Pharmacokinet Pharmacodyn 2013; 40:343-58. [PMID: 23468415 PMCID: PMC3663257 DOI: 10.1007/s10928-013-9306-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/12/2013] [Indexed: 12/24/2022]
Abstract
The ability to deliver drug molecules effectively across the blood-brain barrier into the brain is important in the development of central nervous system (CNS) therapies. Cerebral microdialysis is the only existing technique for sampling molecules from the brain extracellular fluid (ECF; also termed interstitial fluid), the compartment to which the astrocytes and neurones are directly exposed. Plasma levels of drugs are often poor predictors of CNS activity. While cerebrospinal fluid (CSF) levels of drugs are often used as evidence of delivery of drug to brain, the CSF is a different compartment to the ECF. The continuous nature of microdialysis sampling of the ECF is ideal for pharmacokinetic (PK) studies, and can give valuable PK information of variations with time in drug concentrations of brain ECF versus plasma. The microdialysis technique needs careful calibration for relative recovery (extraction efficiency) of the drug if absolute quantification is required. Besides the drug, other molecules can be analysed in the microdialysates for information on downstream targets and/or energy metabolism in the brain. Cerebral microdialysis is an invasive technique, so is only useable in patients requiring neurocritical care, neurosurgery or brain biopsy. Application of results to wider patient populations, and to those with different pathologies or degrees of pathology, obviously demands caution. Nevertheless, microdialysis data can provide valuable guidelines for designing CNS therapies, and play an important role in small phase II clinical trials. In this review, we focus on the role of cerebral microdialysis in recent clinical studies of antimicrobial agents, drugs for tumour therapy, neuroprotective agents and anticonvulsants.
Collapse
|
22
|
Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 2012; 53:1877-86. [PMID: 22905812 DOI: 10.1111/j.1528-1167.2012.03637.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte-endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB-centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add-on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs.
Collapse
Affiliation(s)
- Nicola Marchi
- Departments of Molecular Medicine Cell Biology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, U.S.A.
| | | | | | | |
Collapse
|
23
|
Awasthi R, Rathore RKS, Soni P, Sahoo P, Awasthi A, Husain N, Behari S, Singh RK, Pandey CM, Gupta RK. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 2011; 54:205-13. [PMID: 21541688 DOI: 10.1007/s00234-011-0874-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/11/2011] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The purpose of the present study was to look for the possible predictors which might discriminate between high- and low-grade gliomas by pooling dynamic contrast-enhanced (DCE)-perfusion derived indices and immunohistochemical markers. METHODS DCE-MRI was performed in 76 patients with different grades of gliomas. Perfusion indices, i.e., relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), permeability (k (trans) and k (ep)), and leakage (v (e)) were quantified. MMP-9-, PRL-3-, HIF-1α-, and VEGF-expressing cells were quantified from the excised tumor tissues. Discriminant function analysis using these markers was used to identify discriminatory variables using a stepwise procedure. To look for correlations between immunohistochemical parameters and DCE metrics, Pearson's correlation coefficient was also used. RESULTS A discriminant function for differentiating between high- and low-grade tumors was constructed using DCE-MRI-derived rCBV, k (ep), and v (e). The form of the functions estimated are "D (1) = 0.642 × rCBV + 0.591 × k (ep) - 1.501 × v (e) - 1.550" and "D (2) = 1.608 × rCBV + 3.033 × k (ep) + 5.508 × v (e) - 8.784" for low- and high-grade tumors, respectively. This function classified overall 92.1% of the cases correctly (89.1% high-grade tumors and 100% low-grade tumors). In addition, VEGF expression correlated with rCBV and rCBF, whereas MMP-9 expression correlated with k (ep). A significant positive correlation of HIF-1α with rCBV and VEGF expression was also found. CONCLUSION DCE-MRI may be used to differentiate between high-grade and low-grade brain tumors non-invasively, which may be helpful in appropriate treatment planning and management of these patients. The correlation of its indices with immunohistochemical markers suggests that this imaging technique is useful in tissue characterization of gliomas.
Collapse
Affiliation(s)
- Rishi Awasthi
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|