1
|
Hall LT, Titz B, Baidya N, van der Kolk AG, Robins HI, Otto M, Perlman SB, Weichert JP, Kuo JS. [ 124I]CLR1404 PET/CT in High-Grade Primary and Metastatic Brain Tumors. Mol Imaging Biol 2021; 22:434-443. [PMID: 31183841 DOI: 10.1007/s11307-019-01362-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE There is a continuous search for imaging techniques with high sensitivity and specificity for brain tumors. Positron emission tomography (PET) imaging has shown promise, though many PET agents either have a low tumor specificity or impractical physical half-lives. [124I]CLR1404 is a small molecule alkylphosphocholine analogue that is thought to bind to plasma membrane lipid rafts and has shown high tumor-to-background ratios (TBR) in a previous pilot study in brain tumor patients. This study attempts to define the clinical value of [124I]CLR1404 PET/CT (aka CLR124). PROCEDURES Adult patients with new or suspected recurrence of high-grade primary or metastatic brain tumors (N = 27) were injected with [124I]CLR1404 followed by PET/CT at 6, 24, and 48 h. Standard uptake values (SUV) and TBR values were calculated for all time points. Uptake of [124I]CLR1404 was qualitatively assessed, compared with magnetic resonance imaging (MRI), and correlated with clinical outcome. Final diagnosis (N = 25) was established based on surgically resected tissue or long-term follow-up. RESULTS Positive uptake with high TBR was detected in all but one patient with a final diagnosis of primary/recurrent brain tumor (12/13) and in less than half of patients with treatment-related changes (5/12). Concordance between [124I]CLR1404 uptake and contrast enhancement on MRI was seen in < 40 %, with no concordance between T2-hyperintensities and uptake. No significant difference in overall outcome was found between patients with and without [124I]CLR1404 uptake. CONCLUSIONS The uptake pattern in these patients suggests a very high sensitivity of [124I]CLR1404 PET/CT for diagnosing tumor tissue; however, tumor specificity needs to be further defined. Relative lack of concordance with standard MRI characteristics suggests that [124I]CLR1404 PET/CT provides additional information about brain tumors compared to MRI alone, potentially improving clinical decision-making.
Collapse
Affiliation(s)
- Lance T Hall
- Department of Radiology, University of Wisconsin Hospitals and Clinics, MC 3252, 600 Highland Ave, Madison, WI, 53792, USA. .,Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - Benjamin Titz
- Department of Radiology, University of Wisconsin Hospitals and Clinics, MC 3252, 600 Highland Ave, Madison, WI, 53792, USA
| | - Nishanta Baidya
- Department of Radiology, University of Wisconsin Hospitals and Clinics, MC 3252, 600 Highland Ave, Madison, WI, 53792, USA
| | - Anja G van der Kolk
- Department of Radiology, University of Wisconsin Hospitals and Clinics, MC 3252, 600 Highland Ave, Madison, WI, 53792, USA
| | - H Ian Robins
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Human Oncology, University of Wisconsin, Madison, WI, USA.,Department of Neurology, University of Wisconsin, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Mario Otto
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Scott B Perlman
- Department of Radiology, University of Wisconsin Hospitals and Clinics, MC 3252, 600 Highland Ave, Madison, WI, 53792, USA.,Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Jamey P Weichert
- Department of Radiology, University of Wisconsin Hospitals and Clinics, MC 3252, 600 Highland Ave, Madison, WI, 53792, USA.,Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - John S Kuo
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Human Oncology, University of Wisconsin, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Department of Neurosurgery, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Felker J, Broniscer A. Improving long-term survival in diffuse intrinsic pontine glioma. Expert Rev Neurother 2020; 20:647-658. [PMID: 32543245 DOI: 10.1080/14737175.2020.1775584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is an almost universally fatal pediatric brain cancer. There has been no improvement in event-free survival (EFS) or overall survival (OS) despite immense effort through a multitude of clinical trials to find a cure. Recently, there has been a surge in the knowledge of DIPG biology, including the discovery of a recurrent H3F3A mutation in over 80% of these tumors. AREAS COVERED The authors review the most recent approaches to diagnosis and treatment of DIPG including chemotherapy, biologics, surgical approaches, and immunotherapy. EXPERT OPINION The authors propose four main opportunities to improve long-term survival. First, patients should be enrolled in scientifically sound clinical trials that include molecularly profiling either via stereotactic biopsy or liquid biopsy. Second, clinical trials should include more innovative endpoints other than traditional EFS and OS such as MRI/PET imaging findings combined with surrogates of activity (e.g. serial liquid biopsies) to better ascertain biologically active treatments. Third, innovative clinical trial approaches are needed to help allow for the rapid development of combination therapies to be tested. Finally, effort should be concentrated on reversing the effects of the histone mutation, as this malfunctioning development program seems to be key to DIPG relentlessness.
Collapse
Affiliation(s)
- James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Alberto Broniscer
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
3
|
Chang Y, Donglan Y, Xinchong S, Ganhua L, Bing Z, Yao L, Rutong Z, Qiao H, Xiangsong Z. One-day protocol for 18F-FDG and 13N-ammonia PET/CT with uptake decoupling score in differentiating untreated low-grade glioma from inflammation. Rev Esp Med Nucl Imagen Mol 2020; 39:68-74. [PMID: 32005511 DOI: 10.1016/j.remn.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Accurate identification of low-grade gliomas (LGGs; World Health Organization grades I and II) and their differentiation from brain inflammation lesions (BILs) remains difficult; however, it is essential for treatment. This study assessed whether a one-day protocol for voxel-wise 18F-FDG and 13N-ammonia PET/CT with uptake decoupling analysis could differentiate LGGs from BILs. MATERIALS AND METHODS Twenty-eight patients with LGGs and 16 patients with BILs underwent 18F-FDG and 13N-ammonia PET/CT on the same day before any type of therapy. The decoupling score and tumor-to-normal tissue (T/N) ratio of 18F-FDG and 13N-ammonia were calculated at each location. Student's t-test was used to compare values, and ROC curve analysis was used to establish a cut-off value for the T/N ratio and decoupling score. Area under the curve (AUC) was calculated to evaluate differential efficacy. RESULTS Significant differences were observed in 13N-ammonia T/N ratio (p=0.018) and decoupling score (p=0.003) between LGGs and BILs; however, the 18F-FDG T/N ratio did not show any differences (p=0.413). Optimal cut-off values for 18F-FDG T/N ratio, 13N-ammonia T/N ratio, and decoupling score were 0.73, 0.97, and 2.31, respectively, with corresponding AUCs of 0.48, 0.68, and 0.77. The respective sensitivity, specificity, and accuracy parameters using these cut-off values were 53.6%, 62.5%, and 56.8%, respectively, for 18F-FDG; 50.0%, 75.0%, and 59.1%, respectively, for 13N-ammonia; and 60.7%, 93.8%, and 72.7%, respectively, for decoupling score. CONCLUSIONS 18F-FDG/13N-ammonia uptake decoupling score can be used to discriminate between LGGs and BILs. Use of a decoupling map of these two tracers can improve visual analysis and diagnostic accuracy.
Collapse
Affiliation(s)
- Y Chang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Y Donglan
- Department of Medical Engineering, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - S Xinchong
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Ganhua
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Z Bing
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Yao
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
| | - Z Rutong
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
| | - H Qiao
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Z Xiangsong
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Tinkle CL, Duncan EC, Doubrovin M, Han Y, Li Y, Kim H, Broniscer A, Snyder SE, Merchant TE, Shulkin BL. Evaluation of 11C-Methionine PET and Anatomic MRI Associations in Diffuse Intrinsic Pontine Glioma. J Nucl Med 2018; 60:312-319. [PMID: 30072503 DOI: 10.2967/jnumed.118.212514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022] Open
Abstract
The role of metabolic imaging in the diagnosis, treatment, and response assessment of diffuse intrinsic pontine glioma (DIPG) is poorly defined. We investigated the uptake of 11C-methionine in pediatric patients with newly diagnosed DIPG and evaluated the associations of 11C-methionine PET metrics with conventional MRI indices and survival outcomes. Methods: Twenty-two patients with newly diagnosed DIPG were prospectively enrolled on an institutional review board-approved investigational study of 11C-methionine PET. All patients underwent baseline 11C-methionine PET/CT, and initial treatment-response scans after chemotherapy or radiation therapy were obtained for 17 patients. Typical and atypical DIPGs were assessed clinically and radiographically and defined by multidisciplinary consensus. Three-dimensional regions of interest, reviewed by consensus between a nuclear medicine physician and a radiation oncologist, were delineated after coregistration of PET and MR images. Associations of 11C-methionine uptake intensity and uniformity with survival, along with associations between 11C-methionine uptake and conventional MRI tumor indices over time, were evaluated. 11C-methionine PET voxel values within regions of interest were assessed as threshold values across proportions of the study population, and 11C-methionine uptake at baseline was assessed relative to MRI-defined tumor progression. Results: 11C-methionine uptake above that of uninvolved brain tissue was observed in 18 of 22 baseline scans (82%) and 15 of 17 initial response scans (88%). 11C-methionine avidity within MRI-defined tumor was limited in extent, with 11 of 18 positive baseline 11C-methionine PET scans (61%) showing less than 25% 11C-methionine-avid tumor. The increase in total tumor volume with 11C-methionine PET was relatively limited (17.2%; interquartile range, 6.53%-38.90%), as was the extent of 11C-methionine uptake beyond the MRI-defined tumor (2.2%; interquartile range, 0.55%-10.88%). Although baseline 11C-methionine PET intensity and uniformity metrics did not correlate with survival outcomes, initial 11C-methionine avidity overlapped with recurrent tumor in 100% of cases. A clinical diagnosis of atypical DIPG was associated with borderline significantly prolonged progression-free survival (P = 0.07), yet 11C-methionine PET indices at diagnosis did not differ significantly between atypical and typical DIPGs. Conclusion: Most newly diagnosed DIPGs are successfully visualized by 11C-methionine PET. Baseline 11C-methionine uptake delineates regions at increased risk for recurrence, yet intensity and uniformity metrics did not correlate with treatment outcomes in children with DIPG in this study.
Collapse
Affiliation(s)
- Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Mikhail Doubrovin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Han
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hyun Kim
- Department of Radiation Oncology, Washington University, St. Louis, Missouri; and
| | - Alberto Broniscer
- Department of Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Scott E Snyder
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
5
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
6
|
Ballegeer EA. Computed Tomography of the Musculoskeletal System. Vet Clin North Am Small Anim Pract 2016; 46:373-420, v. [DOI: 10.1016/j.cvsm.2015.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, Watchmaker JM, Harty JP, Cooper MK, Manning HC. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study. PLoS One 2015; 10:e0141659. [PMID: 26517124 PMCID: PMC4627825 DOI: 10.1371/journal.pone.0141659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.
Collapse
Affiliation(s)
- Jason R. Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Eliot T. McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allie Fu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Reid C. Thompson
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Lola Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jennifer M. Watchmaker
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - James P. Harty
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Michael K. Cooper
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Neurology Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States of America
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
8
|
Cheung YY, Nickels ML, Tang D, Buck JR, Manning HC. Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer. Bioorg Med Chem Lett 2014; 24:4466-4471. [PMID: 25172419 PMCID: PMC4163096 DOI: 10.1016/j.bmcl.2014.07.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure-activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 ((18)F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([(18)F]-14) in high radiochemical yield and specific activity. In vivo studies of [(18)F]-14 revealed this agent as a promising probe for molecular imaging of glioma.
Collapse
Affiliation(s)
- Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
9
|
Petrirena GJ, Goldman S, Delattre JY. Advances in PET imaging of brain tumors: a referring physician's perspective. Curr Opin Oncol 2011; 23:617-23. [PMID: 21825989 DOI: 10.1097/cco.0b013e32834aa752] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To highlight the most recent advances in PET imaging of brain tumors, aiming at expanding the referring physician's knowledge in the field, the sine qua non for translating PET into the practice of neuro-oncology. RECENT FINDINGS The role of PET with amino acid tracers in the setting of brain lesions of unknown significance has been better defined, reducing the need for invasive procedures. The impact of PET-guided resection of high-grade glioma using ¹¹C-methionine (¹¹C-MET) has been strongly documented. [¹⁸F]Fluoroethyl-L-tyrosine is currently available for glioma management; advances in targeting glial tumor biopsy and monitoring response to standard chemoradiation of malignant glioma have been remarkable. 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-penta-fluoropropyl)-acetamide is a rationally designed radiotracer with potential for imaging hypoxia in glioblastoma. New insights regarding the predictive value of 3-deoxy-3-[¹⁸F]fluorothymidine in outcome of recurrent malignant glioma treated with bevacizumab/irinotecan have been provided. First steps are being made toward apoptosis PET imaging for early assessment of radiotherapy response in brain metastases. SUMMARY The use of ¹¹C-MET and ¹⁸F-labeled PET tracers is getting a more precise position in the management of brain tumors. Advances hold promises in routine decision-making and in the design and conduct of clinical trials.
Collapse
Affiliation(s)
- Gregorio J Petrirena
- Service de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | |
Collapse
|