1
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
Hu L, Wang Y, Ci M, Long Y. Unravelling microbial drivers of the sulfate-reduction process inside landfill using metagenomics. CHEMOSPHERE 2023; 313:137537. [PMID: 36521740 DOI: 10.1016/j.chemosphere.2022.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is one of the common landfill odor. This research demonstrates that the sulfate transformation behavior is significantly enhanced during the landfill process, accompanied by a shift in microbial structure. The relative abundance of dissimilatory sulfate reduction (DSR) and thiosulfate oxidation by SOX (sulfur-oxidation) complex gradually decreases through the landfill processes while the assimilatory sulfate reduction (ASR) demonstrates the opposite behavior. The major module for landfill sulfate reduction is ASR, accounting for 31.72% ± 2.84% of sulfate metabolism. Based on the functional genes for the sulfate pathway, the drivers for sulfate biotransformation in landfills were determined and further identified their contribution in the sulfate metabolism during landfill processes. Pseudomonas, Methylocaldum, Bacillus, Methylocystis and Hyphomicrobium were the top 5 contributors for ASR pathway, and only one genus Pseudomonas was found for DSR pathway. Among the 26 high-quality metagenome-assembled genomes of sulfate functional species, 24 were considered novel species for sulfuric metabolism. Overall, this study provides unique insight into the sulfate transformation process related to the H2S odor control in landfill management.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Ibrahim IM, Fedonenko YP, Sigida EN, Kokoulin MS, Grinev VS, Mokrushin IG, Burygin GL, Zakharevich AM, Shirokov AA, Konnova SA. Structural characterization and physicochemical properties of the exopolysaccharide produced by the moderately halophilic bacterium Chromohalobacter salexigens, strain 3EQS1. Extremophiles 2023; 27:4. [PMID: 36715826 DOI: 10.1007/s00792-023-01289-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L-1) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 106 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL-1. The EPS had high emulsifying activity (E24, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.,Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia
| | - Yuliya P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - Elena N Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Vyacheslav S Grinev
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | | | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Andrey M Zakharevich
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia
| | - Alexander A Shirokov
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Svetlana A Konnova
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| |
Collapse
|
4
|
Halomonas spp., as chassis for low-cost production of chemicals. Appl Microbiol Biotechnol 2022; 106:6977-6992. [PMID: 36205763 DOI: 10.1007/s00253-022-12215-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
Halomonas spp. are the well-studied platform organisms or chassis for next-generation industrial biotechnology (NGIB) due to their contamination-resistant nature combined with their fast growth property. Several Halomonas spp. have been studied regarding their genomic information and molecular engineering approaches. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), proteins including surfactants and enzymes, small molecular compounds including amino acids and derivates, as well as organic acids. This paper reviews all the progress reported in the last 10 years regarding this robust microbial cell factory. KEY POINTS: • Halomonas spp. are robust chassis for low-cost production of chemicals • Genomic information of some Halomonas spp. has been revealed • Molecular tools and approaches for Halomonas spp. have been developed • Halomonas spp. are becoming more and more important for biotechnology.
Collapse
|
5
|
Lee HS, Lee HJ, Kim B, Kim SH, Cho DH, Jung HJ, Bhatia SK, Choi KY, Kim W, Lee J, Lee SH, Yang YH. Inhibition of Cyclopropane Fatty Acid Synthesis in the Membrane of Halophilic Halomonas socia CKY01 by Kanamycin. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Bischofberger AM, Hall AR. Community Composition of Bacteria Isolated from Swiss Banknotes Varies Depending on Collection Environment. Mol Ecol 2022; 32:2619-2632. [PMID: 35377495 DOI: 10.1111/mec.16456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Humans interact constantly with surfaces and associated microbial communities in the environment. The factors shaping the composition of these communities are poorly understood: some proposed explanations emphasize the influence of local habitat conditions (niche-based explanations), while others point to geographic structure and the distance among sampled locations (dispersal-based explanations). However, the relative roles of these different drivers for microbial community assembly on human-associated surfaces are not clear. Here, we used a combination of sampling, sequencing (16S rRNA) and culturing to show that the composition of banknote-associated bacterial communities varies depending on the local collection environment. Using banknotes collected from various locations and types of shops across Switzerland, we found taxonomic diversity dominated by families such as Pseudomonadaceae and Staphylococcaceae, but with banknote samples from particular types of shops (especially butcher shops) having distinct community structure. By contrast, we found no evidence of geographic structure: similarity of community composition did not decrease with increasing distance among sampled locations. These results show that microbial communities associated with banknotes, one of the most commonly encountered and exchanged human-associated surfaces, can reflect the local environmental conditions (in this case, the type of shop), and the signal for this type of variation was stronger than that for geographic structure among the locations sampled here.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zurich, Switzerland
| |
Collapse
|
7
|
Halomonas as a chassis. Essays Biochem 2021; 65:393-403. [PMID: 33885142 PMCID: PMC8314019 DOI: 10.1042/ebc20200159] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of systems and synthetic biology, the non-model bacteria, Halomonas spp., have been developed recently to become a cost-competitive platform for producing a variety of products including polyesters, chemicals and proteins owing to their contamination resistance and ability of high cell density growth at alkaline pH and high salt concentration. These salt-loving microbes can partially solve the challenges of current industrial biotechnology (CIB) which requires high energy-consuming sterilization to prevent contamination as CIB is based on traditional chassis, typically, Escherichia coli, Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The advantages and current status of Halomonas spp. including their molecular biology and metabolic engineering approaches as well as their applications are reviewed here. Moreover, a systematic strain engineering streamline, including product-based host development, genetic parts mining, static and dynamic optimization of modularized pathways and bioprocess-inspired cell engineering are summarized. All of these developments result in the term called next-generation industrial biotechnology (NGIB). Increasing efforts are made to develop their versatile cell factories powered by synthetic biology to demonstrate a new biomanufacturing strategy under open and continuous processes with significant cost-reduction on process complexity, energy, substrates and fresh water consumption.
Collapse
|
8
|
Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S. PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003. Bioengineering (Basel) 2020; 7:bioengineering7010029. [PMID: 32244900 PMCID: PMC7175313 DOI: 10.3390/bioengineering7010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Among the different tools which can be studied and managed to tailor-make polyhydroxyalkanoates (PHAs) and enhance their production, bacterial strain and carbon substrates are essential. The assimilation of carbon sources is dependent on bacterial strain’s metabolism and consequently cannot be dissociated. Both must wisely be studied and well selected to ensure the highest production yield of PHAs. Halomonas sp. SF2003 is a marine bacterium already identified as a PHA-producing strain and especially of poly-3-hydroxybutyrate (P-3HB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P-3HB-co-3HV). Previous studies have identified different genes potentially involved in PHA production by Halomonas sp. SF2003, including two phaC genes with atypical characteristics, phaC1 and phaC2. At the same time, an interesting adaptability of the strain in front of various growth conditions was highlighted, making it a good candidate for biotechnological applications. To continue the characterization of Halomonas sp. SF2003, the screening of carbon substrates exploitable for PHA production was performed as well as production tests. Additionally, the functionality of both PHA synthases PhaC1 and PhaC2 was investigated, with an in silico study and the production of transformant strains, in order to confirm and to understand the role of each one on PHA production. The results of this study confirm the adaptability of the strain and its ability to exploit various carbon substrates, in pure or mixed form, for PHA production. Individual expression of PhaC1 and PhaC2 synthases in a non-PHA-producing strain, Cupriavidus necator H16 PHB¯4 (DSM 541), allows obtaining PHA production, demonstrating at the same time, functionality and differences between both PHA synthases. All the results of this study confirm the biotechnological interest in Halomonas sp. SF2003.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
- Correspondence: ; Tel.: +33-661-730-222
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), IUEM, Université de Bretagne-Sud (UBS), EA 3884 Lorient, France;
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
| | - Hua Tiang Tan
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Hui Lim
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
| |
Collapse
|
9
|
Li BZ, Zhou HY, Guo B, Chen WJ, Tao JH, Cao NW, Chu XJ, Meng X. Dysbiosis of oral microbiota is associated with systemic lupus erythematosus. Arch Oral Biol 2020; 113:104708. [PMID: 32203722 DOI: 10.1016/j.archoralbio.2020.104708] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The important role of intestinal microbiota in systemic lupus erythematosus (SLE) has been recognized. Oral-gut microbiome axis is a crucial link in human health and disease, but few researches indicated the relationship between oral microorganisms and SLE. This study mainly explored the composition and changes of oral microorganisms in SLE patients with different stages, clinical manifestations and biomarkers. DESIGN Oral microbiota was detected by 16S ribosomal RNA gene sequencing from 20 SLE patients and 19 healthy controls (HCs). The evenness, diversity and composition of oral microbiota were analyzed. Moreover, receiver-operating characteristic analysis was conducted. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to investigate microbiota functions. RESULTS The oral microbiota of SLE patients was imbalanced and the diversity was decreased, but no difference was found between new-onset and treated SLE patients. Families Lactobacillaceae, Veillonellaceae and Moraxellaceae were enriched in SLE patients. Families like Corynebacteriaceae, Micrococcaceae, Defluviitaleaceae, Caulobacteraceae, Phyllobacteriaceae, Methylobacteriaceae, Hyphomicrobiaceae, Sphingomonadaceae, Halomonadaceae, Pseudomonadaceae, Xanthomonadaceae, etc. were decreased in SLE patients. After multiple testing adjustment, families Sphingomonadaceae, Halomonadaceae, and Xanthomonadaceae were significantly decreased in SLE patients. And area under the curve was 0.953 (95% confidence intervals 0.890-1.000) to distinguish SLE patients from HCs. There were differences in metabolic pathways between SLE and HCs (P = 0.025). CONCLUSIONS These findings collectively support that oral microbiota dysbiosis and aberrant metabolic pathways were observed in patients with SLE. Our findings may provide suggestive evidences for the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Biao Guo
- Department of Human Resource, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Wen-Jun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Thomas T, Elain A, Bazire A, Bruzaud S. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 2019; 35:50. [PMID: 30852675 DOI: 10.1007/s11274-019-2627-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
A halophilic Gram-negative eubacterium was isolated from the Iroise Sea and identified as an efficient producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions which sometimes can be constraining for marine strains. This versatility could be of great interest for biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes involved in PHA production and stress tolerance. This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a comparison was made with metabolisms of relative species. Genes annotation highlighted the presence of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid metabolisms were also identified which provided helpful insights into both a better knowledge of the intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be exploited for industrial applications such as PHA production.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France.
| |
Collapse
|
11
|
Gasperotti AF, Revuelta MV, Studdert CA, Herrera Seitz MK. Identification of two different chemosensory pathways in representatives of the genus Halomonas. BMC Genomics 2018; 19:266. [PMID: 29669514 PMCID: PMC5907407 DOI: 10.1186/s12864-018-4655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
Background Species of the genus Halomonas are salt-tolerant organisms that have a versatile metabolism and can degrade a variety of xenobiotic compounds, utilizing them as their sole carbon source. In this study, we examined the genome of a Halomonas isolate from a hydrocarbon-contaminated site to search for chemosensory genes that might be responsible for the observed chemotactic behavior of this organism as well as for other responses to environmental cues. Results Using genome-wide comparative tools, our isolate was identified as a strain of Halomonas titanicae (strain KHS3), together with two other Halomonas strains with available genomes that had not been previously identified at a species level. The search for the main components of chemosensory pathways resulted in the identification of two clusters of chemosensory genes and a total of twenty-five chemoreceptor genes. One of the gene clusters is very similar to the che cluster from Escherichia coli and, presumably, it is responsible for the chemotactic behavior towards a variety of compounds. This gene cluster is present in 47 out of 56 analyzed Halomonas strains with available genomes. A second che-like cluster includes a gene coding for a diguanylate cyclase with a phosphotransfer and two receiver domains, as well as a gene coding for a chemoreceptor with a longer cytoplasmic domain than the other twenty-four. This seemingly independent pathway resembles the wsp pathway from Pseudomonas aeruginosa although it also presents several differences in gene order and domain composition. This second chemosensory gene cluster is only present in a sub-group within the genus Halomonas. Moreover, remarkably similar gene clusters are also found in some orders of Proteobacteria phylogenetically more distant from the Oceanospirillales, suggesting the occurrence of lateral transfer events. Conclusions Chemosensory pathways were investigated within the genus Halomonas. A canonical chemotaxis pathway, controlled by a variable number of chemoreceptors, is widespread among Halomonas species. A second chemosensory pathway of unique organization that involves some type of c-di-GMP signaling was found to be present only in one branch of the genus, as well as in other proteobacterial lineages. Electronic supplementary material The online version of this article (10.1186/s12864-018-4655-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Florencia Gasperotti
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Revuelta
- Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
12
|
Piubeli F, Salvador M, Argandoña M, Nieto JJ, Bernal V, Pastor JM, Cánovas M, Vargas C. Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model. Microb Cell Fact 2018; 17:2. [PMID: 29316921 PMCID: PMC5759318 DOI: 10.1186/s12934-017-0852-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background The halophilic bacterium Chromohalobacter salexigens is a natural producer of ectoines, compatible solutes with current and potential biotechnological applications. As production of ectoines is an osmoregulated process that draws away TCA intermediates, bacterial metabolism needs to be adapted to cope with salinity changes. To explore and use C. salexigens as cell factory for ectoine(s) production, a comprehensive knowledge at the systems level of its metabolism is essential. For this purpose, the construction of a robust and high-quality genome-based metabolic model of C. salexigens was approached. Results We generated and validated a high quality genome-based C. salexigens metabolic model (iFP764). This comprised an exhaustive reconstruction process based on experimental information, analysis of genome sequence, manual re-annotation of metabolic genes, and in-depth refinement. The model included three compartments (periplasmic, cytoplasmic and external medium), and two salinity-specific biomass compositions, partially based on experimental results from C. salexigens. Using previous metabolic data as constraints, the metabolic model allowed us to simulate and analyse the metabolic osmoadaptation of C. salexigens under conditions for low and high production of ectoines. The iFP764 model was able to reproduce the major metabolic features of C. salexigens. Flux Balance Analysis (FBA) and Monte Carlo Random sampling analysis showed salinity-specific essential metabolic genes and different distribution of fluxes and variation in the patterns of correlation of reaction sets belonging to central C and N metabolism, in response to salinity. Some of them were related to bioenergetics or production of reducing equivalents, and probably related to demand for ectoines. Ectoines metabolic reactions were distributed according to its correlation in four modules. Interestingly, the four modules were independent both at low and high salinity conditions, as they did not correlate to each other, and they were not correlated with other subsystems. Conclusions Our validated model is one of the most complete curated networks of halophilic bacteria. It is a powerful tool to simulate and explore C. salexigens metabolism at low and high salinity conditions, driving to low and high production of ectoines. In addition, it can be useful to optimize the metabolism of other halophilic bacteria for metabolite production. Electronic supplementary material The online version of this article (10.1186/s12934-017-0852-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Montserrat Argandoña
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Joaquín J Nieto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Vicente Bernal
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.,Centro de Tecnología de Repsol, REPSOL S.A. Calle Agustín de Betancourt, s/n. 28935, Móstoles, Madrid, Spain
| | - Jose M Pastor
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Manuel Cánovas
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain.
| |
Collapse
|
13
|
Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043. Extremophiles 2017; 21:839-850. [DOI: 10.1007/s00792-017-0946-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/17/2017] [Indexed: 01/18/2023]
|
14
|
Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 2014; 33:1433-42. [PMID: 25447783 DOI: 10.1016/j.biotechadv.2014.10.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production.
Collapse
Affiliation(s)
- Jin Yin
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Tan D, Wu Q, Chen JC, Chen GQ. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 2014; 26:34-47. [PMID: 25217798 DOI: 10.1016/j.ymben.2014.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacI(q)-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4-6 mol% 3-hydroxyvalerate or 3 HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.
Collapse
Affiliation(s)
- Dan Tan
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 2014; 23:78-91. [PMID: 24566041 DOI: 10.1016/j.ymben.2014.02.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/20/2014] [Accepted: 02/08/2014] [Indexed: 11/22/2022]
Abstract
Genetic engineering of Halomonas spp. was seldom reported due to the difficulty of genetic manipulation and lack of molecular biology tools. Halomonas TD01 can grow in a continuous and unsterile process without other microbial contaminations. It can be therefore exploited for economic production of chemicals. Here, Halomonas TD01 was metabolically engineered using the gene knockout procedure based on markerless gene replacement stimulated by double-strand breaks in the chromosome. When gene encoding 2-methylcitrate synthase in Halomonas TD01 was deleted, the conversion efficiency of propionic acid to 3-hydroxyvalerate (3HV) monomer fraction in random PHBV copolymers of 3-hydroxybutyrate (3HB) and 3HV was increased from around 10% to almost 100%, as a result, cells were grown to accumulate 70% PHBV in dry weight (CDW) consisting of 12mol% 3HV from 0.5g/L propionic acid in glucose mineral medium. Furthermore, successful deletions on three PHA depolymerases eliminate the possible influence of PHA depolymerases on PHA degradation in the complicated industrial fermentation process even though significant enhanced PHA content was not observed. In two 500L pilot-scale fermentor studies lasting 70h, the above engineered Halomonas TD01 grew to 112g/L CDW containing 70wt% P3HB, and to 80g/L CDW with 70wt% P(3HB-co-8mol% 3HV) in the presence of propionic acid. The cells grown in shake flasks even accumulated close to 92% PHB in CDW with a significant increase of glucose to PHB conversion efficiency from around 30% to 42% after 48h cultivation when pyridine nucleotide transhydrogenase was overexpressed. Halomonas TD01 was also engineered for producing a PHA regulatory protein PhaR which is a robust biosurfactant.
Collapse
|