1
|
Kushwaha R, Molesworth K, Makarava N, Baskakov IV. Downregulation of STAT3 transcription factor reverses synaptotoxic phenotype of reactive astrocytes associated with prion diseases. Acta Neuropathol Commun 2025; 13:101. [PMID: 40375298 PMCID: PMC12080014 DOI: 10.1186/s40478-025-02028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
In neurodegenerative diseases, including prion diseases, astrocytes adopt reactive phenotypes that persist throughout disease progression. While astrocyte reactivity may initially serve as a protective response to prion infection, it transitions into a neurotoxic phenotype that disrupts homeostatic functions and exacerbates disease pathology. The transcription factor Stat3 has been recognized as a master regulator of astrocyte reactivity in neurodegenerative diseases, yet its role in prion disease-associated astrocyte reactive phenotypes remains unexplored. The current study addresses this gap by investigating the effects of Stat3 deletion in reactive astrocytes isolated from prion-infected mice. We demonstrate that Stat3 deletion mitigates the reactive astrocyte phenotype and alleviates their synaptotoxic effects. Stat3-dependent activation of astrocytes was reproduced by co-culturing naïve astrocytes with reactive microglia isolated from prion-infected animals or exposing them to microglia-conditioned media. A cytokine array profiling of 40 molecules revealed partially overlapping inflammatory signatures in reactive microglia and astrocytes, with IL-6 prominently upregulated in both cell types. Notably, IL-6 treatment elevated phosphorylated Stat3 levels in naïve astrocytes and triggered astrocyte reactivity. These findings indicate that the synaptotoxic phenotype of astrocytes in prion diseases can be sustained by reactive microglia and self-reinforced in a cell-autonomous manner. Our work highlights the pivotal role of Stat3 signaling in astrocyte activation and suggests that Stat3 inhibition may suppress the reactive phenotype of astrocytes associated with prion diseases.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Mutemberezi V, Buisseret B, Masquelier J, Guillemot-Legris O, Alhouayek M, Muccioli GG. Oxysterol levels and metabolism in the course of neuroinflammation: insights from in vitro and in vivo models. J Neuroinflammation 2018. [PMID: 29523207 PMCID: PMC5845224 DOI: 10.1186/s12974-018-1114-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Oxysterols are cholesterol derivatives that have been suggested to play a role in inflammatory diseases such as obesity, atherosclerosis, or neuroinflammatory diseases. However, the effect of neuroinflammation on oxysterol levels has only been partially studied so far. Methods We used an HPLC-MS method to quantify over ten oxysterols both in in vitro and in vivo models of neuroinflammation. In the same models, we used RT-qPCR to analyze the expression of the enzymes responsible for oxysterol metabolism. Using the BV2 microglial cell line, we explored the effect of lipopolysaccharide (LPS)-induced (M1-type) and IL-4-induced (M2-type) cell activation on oxysterol levels. We also used LPS-activated co-cultures of mouse primary microglia and astrocytes. In vivo, we induced a neuroinflammation by administering LPS to mice. Finally, we used a mouse model of multiple sclerosis, namely the experimental autoimmune encephalomyelitis (EAE) model, that is characterized by demyelination and neuroinflammation. Results In vitro, we found that LPS activation induces profound alterations in oxysterol levels. Interestingly, we could discriminate between control and LPS-activated cells based on the changes in oxysterol levels both in BV2 cells and in the primary co-culture of glial cells. In vivo, the changes in oxysterol levels were less marked than in vitro. However, we found in both models increased levels of the GPR183 agonist 7α,25-dihydroxycholesterol. Furthermore, we studied in vitro the effect of 14 oxysterols on the mRNA expression of inflammatory markers in LPS-activated co-culture of microglia and astrocytes. We found that several oxysterols decreased the LPS-induced expression of pro-inflammatory markers. Conclusions These data demonstrate that inflammation profoundly affects oxysterol levels and that oxysterols can modulate glial cell activation. This further supports the interest of a large screening of oxysterol levels when studying the interplay between neuroinflammation and bioactive lipids. Electronic supplementary material The online version of this article (10.1186/s12974-018-1114-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
| |
Collapse
|
3
|
Bouvier DS, Jones EV, Quesseveur G, Davoli MA, A Ferreira T, Quirion R, Mechawar N, Murai KK. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep 2016; 6:24544. [PMID: 27090093 PMCID: PMC4835751 DOI: 10.1038/srep24544] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
Fixed human brain samples in tissue repositories hold great potential for unlocking complexities of the brain and its alteration with disease. However, current methodology for simultaneously resolving complex three-dimensional (3D) cellular anatomy and organization, as well as, intricate details of human brain cells in tissue has been limited due to weak labeling characteristics of the tissue and high background levels. To expose the potential of these samples, we developed a method to overcome these major limitations. This approach offers an unprecedented view of cytoarchitecture and subcellular detail of human brain cells, from cellular networks to individual synapses. Applying the method to AD samples, we expose complex features of microglial cells and astrocytes in the disease. Through this methodology, we show that these cells form specialized 3D structures in AD that we refer to as reactive glial nets (RGNs). RGNs are areas of concentrated neuronal injury, inflammation, and tauopathy and display unique features around β-amyloid plaque types. RGNs have conserved properties in an AD mouse model and display a developmental pattern coinciding with the progressive accumulation of neuropathology. The method provided here will help reveal novel features of the healthy and diseased human brain, and aid experimental design in translational brain research.
Collapse
Affiliation(s)
- David S Bouvier
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Gaël Quesseveur
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Maria Antonietta Davoli
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Tiago A Ferreira
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 2014; 8:117. [PMID: 24904276 PMCID: PMC4033073 DOI: 10.3389/fncel.2014.00117] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial–neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell–cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Ana R Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
5
|
The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol 2012; 254:10-8. [PMID: 22999806 DOI: 10.1016/j.jneuroim.2012.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) are key molecules in the innate immune system in the central nervous system. Although astrocytes are believed to play physiological roles in regulating neuronal activity and synaptic transmission, activated astrocytes may also be toxic to neurons. Here, we show that the ligands for TLRs 2, 4, 5 and 6 induce neuronal cell death in neuron-astrocytes co-cultures through the production of reactive oxygen species (ROS). Inhibition of ROS production by NADPH oxidase inhibitor apocynin significantly suppresses neuronal cell death. ROS induced in astrocytes via TLRs may be involved in neuroinflammation and a therapeutic target for neurotoxicity by activated astrocytes.
Collapse
|
6
|
Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD. Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 2012; 37:2569-88. [PMID: 22926576 DOI: 10.1007/s11064-012-0868-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022]
Abstract
During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system.
Collapse
Affiliation(s)
- Sofie C Lange
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|