1
|
Mouffok I, Lahogue C, Cailly T, Freret T, Bouet V, Boulouard M. A New Three-Hit Mouse Model of Neurodevelopmental Disorder with Cognitive Impairments and Persistent Sociability Deficits. Brain Sci 2024; 14:1281. [PMID: 39766480 PMCID: PMC11674404 DOI: 10.3390/brainsci14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cognitive deficits and negative symptoms associated with schizophrenia are poorly managed by current antipsychotics. In order to develop effective treatments, refining animal models of neurodevelopmental disorders is essential. METHODS To address their multifactorial etiology, we developed a new three-hit mouse model based on the hypoglutamatergic hypothesis of the pathology combined with early stress, offering strong construct validity. Thus, a genetic susceptibility (serine racemase deletion) was associated with an early environmental stress (24 h maternal separation at 9 days of age) and a further pharmacological treatment with phencyclidine (PCP, a glutamate receptor antagonist treatment, 10 mg/kg/day, from 8 to 10 weeks of age). The face validity of this model was assessed in female mice 1 and 6 weeks after the end of PCP treatment by a set of behavioral experiments investigating positive- and negative-like symptoms and cognitive deficits. RESULTS Our results showed that the three-hit mice displayed persistent hyperlocomotion (positive-like symptoms) and social behavior impairment deficits (negative-like symptoms) but non-persistent spatial working memory deficits (cognitive symptoms). CONCLUSIONS Our work confirms the usefulness of a three-hit combination to model, particularly for negative-like symptoms associated with schizophrenia and other psychiatric disorders. The model therefore gathers powerful construct and face validities and supports an involvement of glutamate dysfunction in behavioral symptoms.
Collapse
Affiliation(s)
- Imane Mouffok
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Caroline Lahogue
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Thomas Cailly
- CERMN UR (Unité de Recherche) 4258, Campus 5, Université de Caen Normandie, 14000 Caen, France;
- CYCERON UAR (Unité d’Appui à la Recherche) 3408-US50, IMOGERE, Campus 1, Université de Caen Normandie, 14000 Caen, France
- Department of Nuclear Medicine, CHU Côte de Nacre, 14000 Caen, France
| | - Thomas Freret
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Valentine Bouet
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Michel Boulouard
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| |
Collapse
|
2
|
van den Berg H. Evaluating the validity of animal models of mental disorder: from modeling syndromes to modeling endophenotypes. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:59. [PMID: 36357538 PMCID: PMC9649475 DOI: 10.1007/s40656-022-00537-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This paper provides a historical analysis of a shift in the way animal models of mental disorders were conceptualized: the shift from the mid-twentieth-century view, adopted by some, that animal models model syndromes classified in manuals such as the Diagnostic and Statistical Manual of Mental Disorders (DSM), to the later widespread view that animal models model component parts of psychiatric syndromes. I argue that in the middle of the twentieth century the attempt to maximize the face validity of animal models sometimes led to the pursuit of the ideal of an animal model that represented a behaviorally defined psychiatric syndrome as described in manuals such as the DSM. I show how developments within psychiatric genetics and related criticism of the DSM in the 1990s and 2000s led to the rejection of this ideal and how researchers in the first decade of the twenty-first century came to believe that animal models of mental disorders should model component parts of mental disorders, adopting a so-called endophenotype approach.
Collapse
Affiliation(s)
- Hein van den Berg
- Department of Philosophy, Institute for Logic, Language and Computation, University of Amsterdam, Postbus 94201 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Developmental emergence of persistent memory for contextual and auditory fear in mice. Learn Mem 2021; 28:414-421. [PMID: 34663694 DOI: 10.1101/lm.053471.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/02/2023]
Abstract
The ability to generate memories that persist throughout a lifetime (that is, memory persistence) emerges in early development across species. Although it has been shown that persistent fear memories emerge between late infancy and adolescence in mice, it is unclear exactly when this transition takes place, and whether two major fear conditioning tasks, contextual and auditory fear, share the same time line of developmental onset. Here, we compared the ontogeny of remote contextual and auditory fear in C57BL/6J mice across early life. Mice at postnatal day (P)15, 21, 25, 28, and 30 underwent either contextual or auditory fear training and were tested for fear retrieval 1 or 30 d later. We found that mice displayed 30-d memory for context- and tone-fear starting at P25. We did not find sex differences in the ontogeny of either type of fear memory. Furthermore, 30-d contextual fear retrieval led to an increase in the number of c-Fos positive cells in the prelimbic region of the prefrontal cortex only at an age in which the contextual fear memory was successfully retrieved. These data delineate a precise time line for the emergence of persistent contextual and auditory fear memories in mice and suggest that the prelimbic cortex is only recruited for remote memory recall upon the onset of memory persistence.
Collapse
|
4
|
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder of the central nervous system. While it primarily affects motor function, patients eventually develop non-motor symptoms including depression, anxiety, and eventually dementia. Although there is currently no cure, treatment is aimed largely at improving quality of life though medication or surgical techniques to reduce motor symptoms. However, there is vast evidence of the benefits of physical activity as adjunct therapy for Parkinson's disease. In this review, we analyze 31 studies or reviews and highlight the role of exercise and rehabilitation in PD treatment. This study serves to provide clinicians with a comprehensive resource of the wide variety of exercises with proven benefit for patients affected by Parkinson's disease. Specifically, patients report significant improvements in motor function, cognition, mood and sleep habits.
Collapse
Affiliation(s)
- Mallory Emig
- Department of Neurology, 7547Saint Louis University, Saint Louis, MO, USA
| | - Tikku George
- Department of Neurology, 7547Saint Louis University, Saint Louis, MO, USA
| | - Justin K Zhang
- Department of Neurology, 7547Saint Louis University, Saint Louis, MO, USA
| | | |
Collapse
|
5
|
Bolker JA. Selection of Models: Evolution and the Choice of Species for Translational Research. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:82-91. [PMID: 31416088 DOI: 10.1159/000500317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/10/2019] [Indexed: 11/19/2022]
Abstract
Evolutionary thinking can inform the choice and assessment of model species in neuroscience, particularly when such models are intended to generate knowledge that will translate to humans. Avoiding errors that arise from oversimplified notions of phylogeny or genotype-phenotype mapping is one contribution; evolutionary biology also offers positive guidance. The challenge of finding adequate non-human models for translational research is particularly acute in neuroscience: neurobiological and behavioral phenotypes are complex and plastic, and many traits important in humans are absent, radically different, or difficult to assess in other species. Evolutionary perspectives help to articulate and address these challenges. Darwin's description of "descent with modification" points to two aspects of evolution that can help us assess the matching between a prospective model species and its intended target. One is trees that represent the structure of phylogenetic relationships; the other is phenotypic traits, i.e. the unique characteristics of each species' evolved biology and natural history. Mapping traits onto a phylogeny is the first step toward analyzing the source of similarities between a target and a potential model. Whether similar traits arise from shared ancestry or from adaptive convergence has important implications for what kinds of inferences can be justified, and for the likely translatability of findings. Evolution offers both a rich source of possible models, and guidance for choosing the best ones for a given purpose. Considering model choice from an evolutionary angle not only helps to answer the question "What species might be a good model for studying x?" but also suggests additional questions we should be asking to assess the utility of both potential and current models. Recognizing the diverse ways model organisms can function expands our search image as we seek species to study that can both extend general knowledge, and generate translatable insights relevant to human neurobiology and disease.
Collapse
Affiliation(s)
- Jessica A Bolker
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA,
| |
Collapse
|
6
|
Kaufman J, Torbey S. Child maltreatment and psychosis. Neurobiol Dis 2019; 131:104378. [PMID: 30685353 DOI: 10.1016/j.nbd.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
This paper reviews the literature on the association between experiences of child abuse and neglect and the development of psychoses. It then explores the premise that psychotic patients with a history of maltreatment may comprise a clinically and biological distinct subgroup. The review demonstrates that there is a growing consensus in the field that experiences of child maltreatment contribute to the onset of psychotic symptoms and psychotic disorders. There is also strong support for the premise that patients with psychotic disorders and histories of child maltreatment have distinct clinical characteristics and unique treatment needs, and emerging preliminary data to suggest psychotic patients with a history of maltreatment may comprise a distinct neurobiological subgroup. The mechanisms by which experiences of child maltreatment confers risk for psychotic disorders remains unknown, and the review highlights the value of incorporating translational research perspectives to advance knowledge in this area.
Collapse
Affiliation(s)
- Joan Kaufman
- Kennedy Krieger Institute, Center for Child and Family Traumatic Stress, 1741 Ashland Avenue, Baltimore, MD 21205, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Souraya Torbey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
8
|
Kaffman A, White JD, Wei L, Johnson FK, Krystal JH. Enhancing the Utility of Preclinical Research in Neuropsychiatry Drug Development. Methods Mol Biol 2019; 2011:3-22. [PMID: 31273690 DOI: 10.1007/978-1-4939-9554-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most large pharmaceutical companies have downscaled or closed their clinical neuroscience research programs in response to the low clinical success rate for drugs that showed tremendous promise in animal experiments intended to model psychiatric pathophysiology. These failures have raised serious concerns about the role of preclinical research in the identification and evaluation of new pharmacotherapies for psychiatry. In the absence of a comprehensive understanding of the neurobiology of psychiatric disorders, the task of developing "animal models" seems elusive. The purpose of this review is to highlight emerging strategies to enhance the utility of preclinical research in the drug development process. We address this issue by reviewing how advances in neuroscience, coupled with new conceptual approaches, have recently revolutionized the way we can diagnose and treat common psychiatric conditions. We discuss the implications of these new tools for modeling psychiatric conditions in animals and advocate for the use of systematic reviews of preclinical work as a prerequisite for conducting psychiatric clinical trials. We believe that work in animals is essential for elucidating human psychopathology and that improving the predictive validity of animal models is necessary for developing more effective interventions for mental illness.
Collapse
Affiliation(s)
- Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Jordon D White
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Freedman D, Woods GW. The developing significance of context and function: Neuroscience and law. BEHAVIORAL SCIENCES & THE LAW 2018; 36:411-425. [PMID: 30033592 DOI: 10.1002/bsl.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Neuroscience has already changed the understanding of how intent forms and is acted upon, how an individual's cognitive processes shape behavior, and how bio-psychosocial history and neurodevelopmental approaches provide information that has been largely missing from the assessment of intent. In this paper, we first review the state of forensic assessment of mental condition and intent, focused primarily on the weaknesses of the current approach. In Section 2, we discuss neurobehavioral forensic assessment, which is a neuroscience-based approach. Section 3 focuses on the changing understanding of mental illness and how neuroscience is pushing law towards a functional capacity-and-ability model and away from a diagnostic cut-off model. Finally, in Sections 4 and 5, we turn to the role of social and environmental context in shaping behavior and propose a model of behavioral intent in line with the scientific evidence.
Collapse
|
10
|
Unraveling the Genetics of Major Depression and Stress-Related Psychiatric Disorders: Is It Time for a Paradigm Shift? Biol Psychiatry 2018; 84:82-84. [PMID: 31178063 DOI: 10.1016/j.biopsych.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
|
11
|
Johnson FK, Delpech JC, Thompson GJ, Wei L, Hao J, Herman P, Hyder F, Kaffman A. Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Transl Psychiatry 2018; 8:49. [PMID: 29463821 PMCID: PMC5820270 DOI: 10.1038/s41398-018-0092-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023] Open
Abstract
Childhood maltreatment is associated with a wide range of psychopathologies including anxiety that emerge in childhood and in many cases persist in adulthood. Increased amygdala activation in response to threat and abnormal amygdala connectivity with frontolimbic brain regions, such as the hippocampus and the prefrontal cortex, are some of the most consistent findings seen in individuals exposed to childhood maltreatment. The underlying mechanisms responsible for these changes are difficult to study in humans but can be elucidated using animal models of early-life stress. Such studies are especially powerful in the mouse where precise control of the genetic background and the stress paradigm can be coupled with resting-state fMRI (rsfMRI) to map abnormal connectivity in circuits that regulate anxiety. To address this issue we first compared the effects of two models of early-life stress, limited bedding (LB) and unpredictable postnatal stress (UPS), on anxiety-like behavior in juvenile and adult mice. We found that UPS, but not LB, causes a robust increase in anxiety in juvenile and adult male mice. Next, we used rsfMRI to compare frontolimbic connectivity in control and UPS adult male mice. We found increased amygdala-prefrontal cortex and amygdala-hippocampus connectivity in UPS. The strength of the amygdala-hippocampal and amygdala-prefrontal cortex connectivity was highly correlated with anxiety-like behavior in the open-field test and elevated plus maze. These findings are the first to link hyperconnectivity in frontolimbic circuits and increased anxiety in a mouse model of early-life stress, allowing for more mechanistic understanding of parallel findings in humans.
Collapse
Affiliation(s)
- Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Jean-Christophe Delpech
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Department of Newborn Medicine, Boston Children's Hospital, Harvard medical school, Boston, MA, 02115, USA
| | - Garth J Thompson
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Ren Building, Room B204, Zhangjiang, Pudong, Shanghai, 201210, China
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Jin Hao
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Peter Herman
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06519, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
| |
Collapse
|
12
|
Abstract
Rodents (especially Mus musculus and Rattus norvegicus) have been the most widely used models in biomedical research for many years. A notable shift has taken place over the last two decades, with mice taking a more and more prominent role in biomedical science compared to rats. This shift was primarily instigated by the availability of a much larger genetic toolbox for mice, particularly embryonic-stem-cell-based targeting technology for gene disruption. With the recent emergence of tools for altering the rat genome, notably genome-editing technologies, the technological gap between the two organisms is closing, and it is becoming more important to consider the physiological, anatomical, biochemical and pharmacological differences between rats and mice when choosing the right model system for a specific biological question. The aim of this short review and accompanying poster is to highlight some of the most important differences, and to discuss their impact on studies of human diseases, with a special focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| | - Jiun Youn
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| |
Collapse
|
13
|
Bolker JA. Animal Models in Translational Research: Rosetta Stone or Stumbling Block? Bioessays 2017; 39. [PMID: 29052843 DOI: 10.1002/bies.201700089] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/17/2017] [Indexed: 01/12/2023]
Abstract
Leading animal models are powerful tools for translational research, but they also present obstacles. Poorly conducted preclinical research in animals is a common cause of translational failure, but even when such research is well-designed and carefully executed, challenges remain. In particular, dominant models may bias research directions, elide essential aspects of human disease, omit important context, or subtly shift research targets. Recognizing these stumbling blocks can help us find ways to avoid them: employing a wider range of models, incorporating more realistic environmental conditions, better aligning studies between animals and patients, and focusing on human biology and therapeutic goals. Such changes are costly; but insisting it would be impractical or unrealistic to change strategies offers no way out of the current impasse. Rather, we must acknowledge the obstacles as well as the advantages presented by core models, and direct some of our investments in translational research toward getting around them.
Collapse
Affiliation(s)
- Jessica A Bolker
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
14
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
15
|
Syed SA, Nemeroff CB. Early Life Stress, Mood, and Anxiety Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017694461. [PMID: 28649671 PMCID: PMC5482282 DOI: 10.1177/2470547017694461] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 12/24/2022]
Abstract
Early life stress has been shown to exert profound short- and long-term effects on human physiology both in the central nervous system and peripherally. Early life stress has demonstrated clear association with many psychiatric disorders including major depression, posttraumatic stress disorder, and bipolar disorder. The Diagnostic and Statistics Manuel of Mental Disorders (DSM) diagnostic categorical system has served as a necessary framework for clinical service, delivery, and research, however has not been completely matching the neurobiological research perspective. Early life stress presents a complex dynamic featuring a wide spectrum of physiologic alterations: from epigenetic alterations, inflammatory changes, to dysregulation of the hypothalamic pituitary axis and has further added to the challenge of identifying biomarkers associated with psychiatric disorders. The National Institute of Mental Health's proposed Research Domain Criteria initiative incorporates a dimensional approach to assess discrete domains and constructs of behavioral function that are subserved by identifiable neural circuits. The current neurobiology of early life stress is reviewed in accordance with dimensional organization of Research Domain Criteria matrix and how the findings as a whole fit within the Research Domain Criteria frameworks.
Collapse
Affiliation(s)
- Shariful A. Syed
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
16
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
17
|
Lee YA, Pollet V, Kato A, Goto Y. Prefrontal cortical activity associated with visual stimulus categorization in non-human primates measured with near-infrared spectroscopy. Behav Brain Res 2016; 317:327-331. [PMID: 27702634 DOI: 10.1016/j.bbr.2016.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 12/01/2022]
Abstract
In biomedical research of brain dysfunction in psychiatric disorders, utilization of animal models is essential. However, translation of findings in animal models into the realm of human clinical conditions requires reliable biomarkers that are assessed with the methods mutually employed in animal models and human patients. Near-infrared spectroscopy (NIRS) is a functional neuroimaging technique that has now been widely utilized in human basic and clinical research. However, its application to animal models has been barely conducted. In this study, we developed the method to measure neural activity in the cortex of Japanese macaques using NIRS, and examined cortical responses to presentation of a set of visual stimuli that were categorized into four different groups (flower, monkey, snake, food). Prefrontal cortical (PFC) oxy- and deoxy-hemoglobin changes were found to reliably distinguish the categories of these visual stimuli. The results suggest that cortical activity measurement with NIRS in primates can be a valuable model for identifying biomarkers associated with psychiatric disorders.
Collapse
Affiliation(s)
- Young-A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, South Korea
| | | | - Akemi Kato
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.
| |
Collapse
|
18
|
Delpech JC, Wei L, Hao J, Yu X, Madore C, Butovsky O, Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun 2016; 57:79-93. [PMID: 27301858 PMCID: PMC5010940 DOI: 10.1016/j.bbi.2016.06.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022] Open
Abstract
Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS). We found that BDS increased the density and altered the morphology of microglia in the hippocampus of 14-day old pups, effects that were no longer present on postnatal day (PND) 28. Despite the normal cell number and morphology seen at PND28, the molecular signature of hippocampal microglia, assessed using the NanoString immune panel, was altered at both ages. We showed that during normal hippocampal development, microglia undergo significant changes between PND14 and PND28, including reduced cell density, decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in inflammation and cell migration. However, microglia harvested from the hippocampus of 28-day old BDS mice showed an increase in phagocytic activity and reduced expression of genes that normally increase across development. Promoter analysis indicated that alteration in the transcriptional activity of PU.1, Creb1, Sp1, and RelA accounted for most of the transcriptional changes seen during normal microglia development and for most of the BDS-induced changes at PND14 and PND28. These findings are the first to demonstrate that early life stress dysregulates microglial function in the developing hippocampus and to identify key transcription factors that are likely to mediate these changes.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Jin Hao
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Xiaoqing Yu
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA
| | - Charlotte Madore
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oleg Butovsky
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
19
|
Ku KM, Weir RK, Silverman JL, Berman RF, Bauman MD. Behavioral Phenotyping of Juvenile Long-Evans and Sprague-Dawley Rats: Implications for Preclinical Models of Autism Spectrum Disorders. PLoS One 2016; 11:e0158150. [PMID: 27351457 PMCID: PMC4924796 DOI: 10.1371/journal.pone.0158150] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
The laboratory rat is emerging as an attractive preclinical animal model of autism spectrum disorder (ASD), allowing investigators to explore genetic, environmental and pharmacological manipulations in a species exhibiting complex, reciprocal social behavior. The present study was carried out to compare two commonly used strains of laboratory rats, Sprague-Dawley (SD) and Long-Evans (LE), between the ages of postnatal day (PND) 26-56 using high-throughput behavioral phenotyping tools commonly used in mouse models of ASD that we have adapted for use in rats. We detected few differences between young SD and LE strains on standard assays of exploration, sensorimotor gating, anxiety, repetitive behaviors, and learning. Both SD and LE strains also demonstrated sociability in the 3-chamber social approach test as indexed by spending more time in the social chamber with a constrained age/strain/sex matched novel partner than in an identical chamber without a partner. Pronounced differences between the two strains were, however, detected when the rats were allowed to freely interact with a novel partner in the social dyad paradigm. The SD rats in this particular testing paradigm engaged in play more frequently and for longer durations than the LE rats at both juvenile and young adult developmental time points. Results from this study that are particularly relevant for developing preclinical ASD models in rats are threefold: (i) commonly utilized strains exhibit unique patterns of social interactions, including strain-specific play behaviors, (ii) the testing environment may profoundly influence the expression of strain-specific social behavior and (iii) simple, automated measures of sociability may not capture the complexities of rat social interactions.
Collapse
Affiliation(s)
- Katherine M. Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
| | - Ruth K. Weir
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
- The MIND Institute, University of California, Davis, Sacramento, California, United States of America
| | - Robert F. Berman
- Department of Neurological Surgery, University of California, Davis, Davis, California, United States of America
| | - Melissa D. Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
- The MIND Institute, University of California, Davis, Sacramento, California, United States of America
- California National Primate Research Center, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Montalvo-Ortiz JL, Gelernter J, Hudziak J, Kaufman J. RDoC and translational perspectives on the genetics of trauma-related psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:81-91. [PMID: 26592203 PMCID: PMC4754782 DOI: 10.1002/ajmg.b.32395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023]
Abstract
Individuals with a history of child abuse are at high risk for depression, anxiety disorders, aggressive behavior, and substance use problems. The goal of this paper is to review studies of the genetics of these stress-related psychiatric disorders. An informative subset of studies that examined candidate gene by environment (GxE) predictors of these psychiatric problems in individuals maltreated as children is reviewed, together with extant genome wide association studies (GWAS). Emerging findings on epigenetic changes associated with adverse early experiences are also reviewed. Meta-analytic support and replicated findings are evident for several genetic risk factors; however, extant research suggests the effects are pleiotropic. Genetic factors are not associated with distinct psychiatric disorders, but rather diverse clinical phenotypes. Research also suggests adverse early life experiences are associated with changes in gene expression of multiple known candidate genes, genes involved in DNA transcription and translation, and genes necessary for brain circuitry development, with changes in gene expression reported in key brain structures implicated in the pathophysiology of psychiatric and substance use disorders. The finding of pleiotropy highlights the value of using the Research Domain Criteria (RDoC) framework in future studies of the genetics of stress-related psychiatric disorders, and not trying simply to link genes to multifaceted clinical syndromes, but to more limited phenotypes that map onto distinct neural circuits. Emerging work in the field of epigenetics also suggests that translational studies that integrate numerous unbiased genome-wide approaches will help to further unravel the genetics of stress-related psychiatric disorders.
Collapse
Affiliation(s)
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Veteran's Administration Connecticut Health Care Center, Newington, Connecticut
| | - James Hudziak
- Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, Vermont
| | - Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, Baltimore, Maryland,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland,Correspondence to: Joan Kaufman, Ph.D., Center for Child and Family Traumatic Stress, Kennedy Krieger Institute, 1750 East Fairmont Street, Baltimore, MD 21231.
| |
Collapse
|
21
|
PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology (Berl) 2015; 232:4085-97. [PMID: 25943167 DOI: 10.1007/s00213-015-3946-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 02/06/2023]
Abstract
RATIONALE N-methyl-D-aspartate receptor (NMDA-R) hypofunction has been proposed to account for the pathophysiology of schizophrenia. Thus, NMDA-R blockade has been used to model schizophrenia in experimental animals. Acute and repeated treatments have been successfully tested; however, long-term exposure to NMDA-R antagonists more likely resembles the core symptoms of the illness. OBJECTIVES To explore whether schizophrenia-related behaviors are differentially induced by acute and subchronic phencyclidine (PCP) treatment in mice and to examine the neurobiological bases of these differences. RESULTS Subchronic PCP induced a sensitization of acute locomotor effects. Spontaneous alternation in a T-maze and novel object recognition performance were impaired after subchronic but not acute PCP, suggesting a deficit in working memory. On the contrary, reversal learning and immobility in the tail suspension test were unaffected. Subchronic PCP significantly reduced basal dopamine but not serotonin output in medial prefrontal cortex (mPFC) and markedly decreased the expression of tyrosine hydroxylase in the ventral tegmental area. Finally, acute and subchronic PCP treatments evoked a different pattern of c-fos expression. At 1 h post-treatment, acute PCP increased c-fos expression in many cortical regions, striatum, thalamus, hippocampus, and dorsal raphe. However, the increased c-fos expression produced by subchronic PCP was restricted to the retrosplenial cortex, thalamus, hippocampus, and supramammillary nucleus. Four days after the last PCP injection, c-fos expression was still increased in the hippocampus of subchronic PCP-treated mice. CONCLUSIONS Acute and subchronic PCP administration differently affects neuronal activity in brain regions relevant to schizophrenia, which could account for their different behavioral effects.
Collapse
|
22
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
23
|
Abstract
Many patients with major depressive disorder (MDD) only partially respond, and some have no clinically meaningful response, to current widely used antidepressant drugs. Due to the purported role of dopamine in the pathophysiology of depression, triple-reuptake inhibitors (TRIs) that simultaneously inhibit serotonin (5-HT), norepinephrine (NE) and dopamine reuptake could be a useful addition to the armamentarium of treatments for MDD. A TRI should more effectively activate mesolimbic dopamine-related reward-networks, restore positive mood and reduce potent 5-HT reuptake blockade associated "hypodopaminergic" adverse effects of decreased libido, weight gain and "blunting" of emotions. On the other hand, dopaminergic effects raise concern over abuse liability and TRIs may have many of the cardiovascular effects associated with NET inhibition. Several clinical development programs for potential TRI antidepressants have failed to demonstrate significantly greater efficacy than placebo or standard of care. Successful late-stage clinical development of a TRI is more likely if experimental research studies in the target population of depressed patients have demonstrated target engagement that differentially and dose-dependently improves assessments of reward-network dysfunction relative to existing antidepressants. TRI treatment could be individualized on the basis of predictive markers such as the burden of decreased positive mood symptoms and/or neuroimaging evidence of reward network dysfunction. This review focuses on how the next generation of monoamine-based treatments could be efficiently developed to address unmet medical need in MDD.
Collapse
|
24
|
Peters SM, Pothuizen HHJ, Spruijt BM. Ethological concepts enhance the translational value of animal models. Eur J Pharmacol 2015; 759:42-50. [PMID: 25823814 DOI: 10.1016/j.ejphar.2015.03.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 12/21/2022]
Abstract
The translational value of animal models is an issue of ongoing discussion. We argue that 'Refinement' of animal experiments is needed and this can be achieved by exploiting an ethological approach when setting up and conducting experiments. Ethology aims to assess the functional meaning of behavioral changes, due to experimental manipulation or treatment, in animal models. Although the use of ethological concepts is particularly important for studies involving the measurement of animal behavior (as is the case for most studies on neuro-psychiatric conditions), it will also substantially benefit other disciplines, such as those investigating the immune system or inflammatory response. Using an ethological approach also involves using more optimal testing conditions are employed that have a biological relevance to the animal. Moreover, using a more biological relevant analysis of the data will help to clarify the functional meaning of the modeled readout (e.g. whether it is psychopathological or adaptive in nature). We advocate for instance that more behavioral studies should use animals in group-housed conditions, including the recording of their ultrasonic vocalizations, because (1) social behavior is an essential feature of animal models for human 'social' psychopathologies, such as autism and schizophrenia, and (2) social conditions are indispensable conditions for appropriate behavioral studies in social species, such as the rat. Only when taking these elements into account, the validity of animal experiments and, thus, the translation value of animal models can be enhanced.
Collapse
Affiliation(s)
- Suzanne M Peters
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands; Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands.
| | - Helen H J Pothuizen
- Delta Phenomics B.V., Nistelrooisebaan 3, NL-5374 RE Schaijk, The Netherlands
| | - Berry M Spruijt
- Faculty of Science, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
25
|
Cohen JL, Glover ME, Pugh PC, Fant AD, Simmons RK, Akil H, Kerman IA, Clinton SM. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety. Dev Neurosci 2015; 37:203-14. [PMID: 25791846 DOI: 10.1159/000374108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/09/2015] [Indexed: 12/24/2022] Open
Abstract
The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high versus low behavioral response to novelty and found that high-reactive (bred high-responder, bHR) rats displayed greater risk-taking, impulsivity and aggression relative to low-reactive (bred low-responder, bLR) rats, which showed high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable, but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior to the brain development and emotional behavior of bLR offspring. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine the effects on the following: (1) developmental gene expression in the hippocampus and amygdala and (2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain's developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Joshua L Cohen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Ala., USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wei L, Hao J, Kaffman A. Early life stress inhibits expression of ribosomal RNA in the developing hippocampus. PLoS One 2014; 9:e115283. [PMID: 25517398 PMCID: PMC4269428 DOI: 10.1371/journal.pone.0115283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022] Open
Abstract
Children that are exposed to abuse or neglect show abnormal hippocampal function. However, the developmental mechanisms by which early life stress (ELS) impairs normal hippocampal development have not been elucidated. Here we propose that exposure to ELS blunts normal hippocampal growth by inhibiting the availability of ribosomal RNA (rRNA). In support of this hypothesis, we show that the normal mouse hippocampus undergoes a growth-spurt during the second week of life, followed by a gradual decrease in DNA and RNA content that persists into adulthood. This developmental pattern is associated with accelerated ribosomal RNA (rRNA) synthesis during the second week of life, followed by a gradual decline in rRNA levels that continue into adulthood. Levels of DNA methylation at the ribosomal DNA (rDNA) promoter are lower during the second week of life compared to earlier development or adulthood. Exposure to brief daily separation (BDS), a mouse model of early life stress, increased DNA methylation at the ribosomal DNA promoter, decreased rRNA levels, and blunted hippocampal growth during the second week of life. Exposure to acute (3 hrs) maternal separation decreased rRNA and increased DNA methylation at the rDNA proximal promoter, suggesting that exposure to stress early in life can rapidly regulate the availability of rRNA levels in the developing hippocampus. Given the critical role that rRNA plays in supporting normal growth and development, these findings suggest a novel molecular mechanism to explain how stress early in life impairs hippocampus development in the mouse.
Collapse
Affiliation(s)
- Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jin Hao
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants. Proc Natl Acad Sci U S A 2014; 111:E4779-88. [PMID: 25331903 DOI: 10.1073/pnas.1417294111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Collapse
|
28
|
Chung BHY, Tao VQ, Tso WWY. Copy number variation and autism: New insights and clinical implications. J Formos Med Assoc 2014; 113:400-8. [DOI: 10.1016/j.jfma.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/03/2012] [Accepted: 01/22/2013] [Indexed: 12/11/2022] Open
|
29
|
Glutamate and modeling of schizophrenia symptoms: Review of our Findings: 1990–2014. Pharmacol Rep 2014; 66:343-52. [DOI: 10.1016/j.pharep.2014.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/28/2013] [Accepted: 01/03/2014] [Indexed: 11/23/2022]
|
30
|
Kobayashi M, Nakatani T, Koda T, Matsumoto KI, Ozaki R, Mochida N, Takao K, Miyakawa T, Matsuoka I. Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain 2014; 7:12. [PMID: 24528488 PMCID: PMC3928644 DOI: 10.1186/1756-6606-7-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system. RESULTS Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder (ADHD). CONCLUSIONS Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1.
Collapse
Affiliation(s)
- Miwako Kobayashi
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Toshiyuki Nakatani
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiaki Koda
- Laboratory of Embryonic and Genetic Engineering, Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Ryosuke Ozaki
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Natsuki Mochida
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka Myodaiji, Okazaki 444-8585, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka Myodaiji, Okazaki 444-8585, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Ichiro Matsuoka
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
31
|
History of Psychosurgery: A Psychiatrist's Perspective. World Neurosurg 2013; 80:S27.e1-16. [DOI: 10.1016/j.wneu.2013.02.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 01/13/2023]
|
32
|
Favre MR, Barkat TR, LaMendola D, Khazen G, Markram H, Markram K. General developmental health in the VPA-rat model of autism. Front Behav Neurosci 2013; 7:88. [PMID: 23898245 PMCID: PMC3721005 DOI: 10.3389/fnbeh.2013.00088] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/01/2013] [Indexed: 12/28/2022] Open
Abstract
Autism is a neurodevelopmental condition diagnosed by impaired social interaction, abnormal communication and, stereotyped behaviors. While post-mortem and imaging studies have provided good insights into the neurobiological symptomology of autism, animal models can be used to study the neuroanatomical, neurophysiological and molecular mediators in more detail and in a more controlled environment. The valproic acid (VPA) rat model is an environmentally triggered model with strong construct and clinical validity. It is based on VPA teratogenicity in humans, where mothers who are medicated with VPA during early pregnancy show an increased risk for giving birth to an autistic child. In rats, early embryonic exposure, around the time of neural tube closure, leads to autism-like anatomical and behavioral abnormalities in the offspring. Considering the increasing use of the VPA rat model, we present our observations of the general health of Wistar dams treated with a single intraperitoneal injection of 500 or, 600 mg/kg VPA on embryonic day E12.5, as well as their male and female offspring, in comparison to saline-exposed controls. We report increased rates of complete fetal reabsorption after both VPA doses. VPA 500 mg/kg showed no effect on dam body weight during pregnancy or, on litter size. Offspring exposed to VPA 500 mg/kg showed smaller brain mass on postnatal days 1 (P1) and 14 (P14), in addition to abnormal nest seeking behavior at P10 in the olfactory discrimination test, relative to controls. We also report increased rates of physical malformations in the offspring, rare occurrences of chromodacryorrhea and, developmentally similar body mass gain. Further documentation of developmental health may guide sub-grouping of individuals in a way to better predict core symptom severity.
Collapse
Affiliation(s)
- Mônica R. Favre
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Tania R. Barkat
- Department of Neuroscience and Pharmacology, Copenhagen UniversityCopenhagen, Denmark
| | - Deborah LaMendola
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Georges Khazen
- Computer Science and Mathematics Department, School of Arts and Sciences, Lebanese American UniversityByblos, Lebanon
| | - Henry Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Kamila Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
33
|
Chesler EJ, Logan RW. Opportunities for bioinformatics in the classification of behavior and psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013. [PMID: 23195316 DOI: 10.1016/b978-0-12-398323-7.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A bioinformatics approach to behavioral neuroscience provides both unique opportunities and challenges for research on behavior. A major challenge has been to describe, define, and discriminate among abstract behavioral processes, in large part by distinguishing among the biological mechanisms of unique but not entirely discrete, entities of behavior. Understanding the complexity of neurobiology and behavior requires integration of data across diverse biological systems, types of data, and levels of scale. With the perspective and application of bioinformatics, we can uncover the relationships among these systems and take steps forward in realizing the common and distinct bases of psychiatric disease.
Collapse
|
34
|
Hoffman KL. Role of murine models in psychiatric illness drug discovery: a dimensional view. Expert Opin Drug Discov 2013; 8:865-77. [DOI: 10.1517/17460441.2013.797959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Miller GA, Rockstroh B. Endophenotypes in Psychopathology Research: Where Do We Stand? Annu Rev Clin Psychol 2013; 9:177-213. [DOI: 10.1146/annurev-clinpsy-050212-185540] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gregory A. Miller
- Department of Psychology, University of Delaware, Newark, Delaware 19716;
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61820
| | - Brigitte Rockstroh
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany;
| |
Collapse
|
36
|
Oddi D, Crusio WE, D'Amato FR, Pietropaolo S. Monogenic mouse models of social dysfunction: implications for autism. Behav Brain Res 2013; 251:75-84. [PMID: 23327738 DOI: 10.1016/j.bbr.2013.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/14/2012] [Accepted: 01/05/2013] [Indexed: 12/21/2022]
Abstract
Autism is a pervasive disorder characterized by a complex symptomatology, based principally on social dysfunction. The disorder has a highly complex, largely genetic etiology, involving an impressive variety of genes, the precise contributions of which still remain to be determined. For this reason, a reductionist approach to the study of autism has been proposed, employing monogenic animal models of social dysfunction, either by targeting a candidate gene, or by mimicking a single-gene disorder characterized by autistic symptoms. In the present review, we discuss this monogenic approach by comparing examples of each strategy: the mu opioid receptor knock-out (KO) mouse line, which targets the opioid system (known to be involved in the control of social behaviors); and the Fmr1-KO mouse, a model for Fragile X syndrome (a neurodevelopmental syndrome that includes autistic symptoms). The autistic-relevant behavioral phenotypes of the mu-opioid and Fmr1-KO mouse lines are described here, summarizing previous work by our research group and others, but also providing novel experimental evidence. Relevant factors influencing the validity of the two models, such as sex differences and age at testing, are also addressed, permitting an extensive evaluation of the advantages and limits of monogenic mouse models for autism.
Collapse
Affiliation(s)
- D Oddi
- CNR, Cell Biology and Neurobiology Institute, Rome, Italy; IRCCS, Santa Lucia Foundation, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Akers KG, Arruda-Carvalho M, Josselyn SA, Frankland PW. Ontogeny of contextual fear memory formation, specificity, and persistence in mice. Learn Mem 2012; 19:598-604. [PMID: 23161449 DOI: 10.1101/lm.027581.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pinpointing the precise age when young animals begin to form memories of aversive events is valuable for understanding the onset of anxiety and mood disorders and for detecting early cognitive impairment in models of childhood-onset disorders. Although these disorders are most commonly modeled in mice, we know little regarding the development of learning and memory in this species because most previous studies have been restricted to rats. Therefore, in the present study, we constructed an ontogenetic timeline of contextual fear memory ranging from infancy to adulthood in mice. We found that the ability of mice to form long-term context-shock associations emerged ∼13-14 d of age, which is several days earlier than previously reported for rats. Although the ability to form contextual fear memories remained stable from infancy into adulthood, infant mice had shorter-lasting memories than adolescent and adult mice. Furthermore, we found that mice subjected to fetal alcohol exposure showed a delay in the developmental emergence of contextual fear memory, illustrating the utility of this ontogenetic approach in detecting developmental delays in cognitive function stemming from maladaptive early life experience.
Collapse
Affiliation(s)
- Katherine G Akers
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | | | | | | |
Collapse
|
38
|
Vrieze SI, Iacono WG, McGue M. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world. Dev Psychopathol 2012; 24:1195-214. [PMID: 23062291 PMCID: PMC3476066 DOI: 10.1017/s0954579412000648] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article serves to outline a research paradigm to investigate main effects and interactions of genes, environment, and development on behavior and psychiatric illness. We provide a historical context for candidate gene studies and genome-wide association studies, including benefits, limitations, and expected payoffs. Using substance use and abuse as our driving example, we then turn to the importance of etiological psychological theory in guiding genetic, environmental, and developmental research, as well as the utility of refined phenotypic measures, such as endophenotypes, in the pursuit of etiological understanding and focused tests of genetic and environmental associations. Phenotypic measurement has received considerable attention in the history of psychology and is informed by psychometrics, whereas the environment remains relatively poorly measured and is often confounded with genetic effects (i.e., gene-environment correlation). Genetically informed designs, which are no longer limited to twin and adoption studies thanks to ever-cheaper genotyping, are required to understand environmental influences. Finally, we outline the vast amount of individual difference in structural genomic variation, most of which remains to be leveraged in genetic association tests. Although the genetic data can be massive and burdensome (tens of millions of variants per person), we argue that improved understanding of genomic structure and function will provide investigators with new tools to test specific a priori hypotheses derived from etiological psychological theory, much like current candidate gene research but with less confusion and more payoff than candidate gene research has to date.
Collapse
Affiliation(s)
- Scott I Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
39
|
Pritchett D, Wulff K, Oliver PL, Bannerman DM, Davies KE, Harrison PJ, Peirson SN, Foster RG. Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. J Neural Transm (Vienna) 2012; 119:1061-75. [PMID: 22569850 DOI: 10.1007/s00702-012-0817-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022]
Abstract
Sleep and circadian rhythm disruption (SCRD) and schizophrenia are often co-morbid. Here, we propose that the co-morbidity of these disorders stems from the involvement of common brain mechanisms. We summarise recent clinical evidence that supports this hypothesis, including the observation that the treatment of SCRD leads to improvements in both the sleep quality and psychiatric symptoms of schizophrenia patients. Moreover, many SCRD-associated pathologies, such as impaired cognitive performance, are routinely observed in schizophrenia. We suggest that these associations can be explored at a mechanistic level by using animal models. Specifically, we predict that SCRD should be observed in schizophrenia-relevant mouse models. There is a rapidly accumulating body of evidence which supports this prediction, as summarised in this review. In light of these emerging data, we highlight other models which warrant investigation, and address the potential challenges associated with modelling schizophrenia and SCRD in rodents. Our view is that an understanding of the mechanistic overlap between SCRD and schizophrenia will ultimately lead to novel treatment approaches, which will not only ameliorate SCRD in schizophrenia patients, but also will improve their broader health problems and overall quality of life.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences-Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Level 5-6 West Wing, Headley Way, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | |
Collapse
|