1
|
Millard SM, Heng O, Opperman KS, Sehgal A, Irvine KM, Kaur S, Sandrock CJ, Wu AC, Magor GW, Batoon L, Perkins AC, Noll JE, Zannettino ACW, Sester DP, Levesque JP, Hume DA, Raggatt LJ, Summers KM, Pettit AR. Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Rep 2021; 37:110058. [PMID: 34818538 DOI: 10.1016/j.celrep.2021.110058] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations. The macrophage remnant binding profile reflects interactions between macrophages and other cell types in vivo. Depletion of CD169+ macrophages in vivo eliminates F4/80+ remnant attachment. Remnant-restricted macrophage-specific membrane markers, cytoplasmic fluorescent reporters, and mRNA are all detected in non-macrophage cells including isolated stem and progenitor cells. Analysis of RNA sequencing (RNA-seq) data, including publicly available datasets, indicates that macrophage fragmentation is a general phenomenon that confounds bulk and single-cell analysis of disaggregated hematopoietic tissues. Hematopoietic tissue macrophage fragmentation undermines the accuracy of macrophage ex vivo molecular profiling and creates opportunity for misattribution of macrophage-expressed genes to non-macrophage cells.
Collapse
Affiliation(s)
- Susan M Millard
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ostyn Heng
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Khatora S Opperman
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA 5001, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; The University of Queensland, UQ Diamantina Institute, Brisbane, QLD 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; TRI Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Graham W Magor
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Andrew C Perkins
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA 5001, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, PO Box 11060, Adelaide, SA 5001, Australia; Central Adelaide Local Health Network, Adelaide, SA 5001, Australia
| | - David P Sester
- TRI Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kim M Summers
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
2
|
Kaur S, Sehgal A, Wu AC, Millard SM, Batoon L, Sandrock CJ, Ferrari-Cestari M, Levesque JP, Hume DA, Raggatt LJ, Pettit AR. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol 2021; 14:3. [PMID: 33402221 PMCID: PMC7786999 DOI: 10.1186/s13045-020-00997-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. Methods We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. Results CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48−CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48−CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. Conclusion These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia.
| |
Collapse
|
3
|
Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood 2018; 132:735-749. [PMID: 29945953 DOI: 10.1182/blood-2018-01-829663] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Distinct subsets of resident tissue macrophages are important in hematopoietic stem cell niche homeostasis and erythropoiesis. We used a myeloid reporter gene (Csf1r-eGFP) to dissect the persistence of bone marrow and splenic macrophage subsets following lethal irradiation and autologous hematopoietic stem cell transplantation in a mouse model. Multiple recipient bone marrow and splenic macrophage subsets survived after autologous hematopoietic stem cell transplantation with organ-specific persistence kinetics. Short-term persistence (5 weeks) of recipient resident macrophages in spleen paralleled the duration of extramedullary hematopoiesis. In bone marrow, radiation-resistant recipient CD169+ resident macrophages and erythroid-island macrophages self-repopulated long-term after transplantation via autonomous cell division. Posttransplant peak expansion of recipient CD169+ resident macrophage number in bone marrow aligned with the persistent engraftment of phenotypic long-term reconstituting hematopoietic stem cells within bone marrow. Selective depletion of recipient CD169+ macrophages significantly compromised the engraftment of phenotypic long-term reconstituting hematopoietic stem cells and consequently impaired hematopoietic reconstitution. Recipient bone marrow resident macrophages are essential for optimal hematopoietic stem cell transplantation outcomes and could be an important consideration in the development of pretransplant conditioning therapies and/or chemoresistance approaches.
Collapse
|
4
|
Zhang L, Chen J, Chai W, Ni M, Sun X, Tian D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp Ther Med 2016; 12:3063-3067. [PMID: 27882117 DOI: 10.3892/etm.2016.3696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to examine the effect of glycitin on the regulation of osteoblasts from bone marrow stem cells (BMSCs) through transforming growth factor (TGF)-β or protein kinase B (AKT) signaling pathways. BMSCs were extracted from New Zealand white rabbits and used to analyze the effect of glycitin on BMSCs. BMSCs were cleared using xylene and observed via light microscopy. BMSCs were subsequently induced with glycitin (0.01, 0.5, 1, 5 and 10 µM) for 7 days, and stained with Oil Red O. The mechanism of action of glycitin on BMSCs was investigated, in which contact with collagen type I (Col I), alkaline phosphatase (ALP), TGF-β and AKT was studied. Firstly, BMSCs appeared homogeneously mazarine blue, and which showed that BMSCs were successful extracted. Administration of glycitin increased cell proliferation and promoted osteoblast formation from BMSCs. Furthermore, glycitin activated the gene expression of Col I and ALP in BMSCs. Notably, glycitin suppressed protein expression of TGF-β and AKT in BMSCs. These results indicated that glycitin may regulate osteoblasts through TGF-β or AKT signaling pathways in BMSCs.
Collapse
Affiliation(s)
- Liyan Zhang
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China; First Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin 132000, P.R. China
| | - Jiying Chen
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Wei Chai
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Min Ni
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Xin Sun
- Life Science Research Center of Beihua University, Jilin 132000, P.R. China
| | - Dan Tian
- Life Science Research Center of Beihua University, Jilin 132000, P.R. China
| |
Collapse
|
5
|
Raynaud CM, Butler JM, Halabi NM, Ahmad FS, Ahmed B, Rafii S, Rafii A. Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Res 2013; 11:1074-90. [PMID: 23978474 DOI: 10.1016/j.scr.2013.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022] Open
Abstract
Umbilical cord blood (UCB) is an attractive source of hematopoietic stem cells (HSCs). However, the number of HSCs in UCB is limited, and attempts to amplify them in vitro remain inefficient. Several publications have documented amplification of hematopoietic stem/progenitor cells (HSPCs) on endothelial or mesenchymal cells, but the lack of homogeneity in culture conditions and HSC definition impairs direct comparison of these results. We investigated the ability of different feeder layers, mesenchymal progenitors (MPs) and endothelial cells (ECs), to amplify hematopoietic stem/progenitor cells. Placental derived HSPCs (defined as Lin(-)CD45(-/dim)CD34(+)CD38(-)CD90(+)) were maintained on confluent feeder layers and the number of cells and their marker expression were monitored over 21 days. Although both types of feeder layers supported hematopoietic expansion, only endothelial cells triggered amplification of Lin(-)CD45(-/dim)CD34(+)CD38(-)CD90(+) cells, which peaked at 14 days. The amplified cells differentiated into all cell lineages, as attested by in vitro colony-forming assays, and were capable of engraftment and multi-lineage differentiation in sub-lethally irradiated mice. Mesenchymal progenitors promoted amplification of CD38(+) cells, previously defined as precursors with more limited differentiation potential. A competitive assay demonstrated that hematopoietic stem/progenitor cells had a preference for interacting with endothelial cells in vitro. Cytokine and transcriptomic analysis of both feeder cell types identified differences in gene expression that correlated with propensity of ECs and MPs to support hematopoietic cell amplification and differentiation respectively. Finally, we used RNA sequencing of endothelial cells and HSPCs to uncover relevant networks illustrating the complex interaction between endothelial cells and HSPCs leading to stem/progenitor cell expansion.
Collapse
Affiliation(s)
- Christophe M Raynaud
- Qatar Cardiovascular Research Center, Qatar Foundation, Qatar Science and Technology Park, Doha, Qatar
| | | | | | | | | | | | | |
Collapse
|
6
|
Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, Magnani JL, Lévesque JP. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 2012; 18:1651-7. [DOI: 10.1038/nm.2969] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 01/16/2023]
|
7
|
Winkler IG, Bendall LJ, Forristal CE, Helwani F, Nowlan B, Barbier V, Shen Y, Cisterne A, Sedger LM, Levesque JP. B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2. Haematologica 2012; 98:325-33. [PMID: 22929978 DOI: 10.3324/haematol.2012.069260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties.
Collapse
Affiliation(s)
- Ingrid G Winkler
- Mater Research at the Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|