1
|
Husar A, Ordyan M, Garcia GC, Yancey JG, Saglam AS, Faeder JR, Bartol TM, Kennedy MB, Sejnowski TJ. MCell4 with BioNetGen: A Monte Carlo simulator of rule-based reaction-diffusion systems with Python interface. PLoS Comput Biol 2024; 20:e1011800. [PMID: 38656994 PMCID: PMC11073787 DOI: 10.1371/journal.pcbi.1011800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/06/2024] [Accepted: 01/03/2024] [Indexed: 04/26/2024] Open
Abstract
Biochemical signaling pathways in living cells are often highly organized into spatially segregated volumes, membranes, scaffolds, subcellular compartments, and organelles comprising small numbers of interacting molecules. At this level of granularity stochastic behavior dominates, well-mixed continuum approximations based on concentrations break down and a particle-based approach is more accurate and more efficient. We describe and validate a new version of the open-source MCell simulation program (MCell4), which supports generalized 3D Monte Carlo modeling of diffusion and chemical reaction of discrete molecules and macromolecular complexes in solution, on surfaces representing membranes, and combinations thereof. The main improvements in MCell4 compared to the previous versions, MCell3 and MCell3-R, include a Python interface and native BioNetGen reaction language (BNGL) support. MCell4's Python interface opens up completely new possibilities for interfacing with external simulators to allow creation of sophisticated event-driven multiscale/multiphysics simulations. The native BNGL support, implemented through a new open-source library libBNG (also introduced in this paper), provides the capability to run a given BNGL model spatially resolved in MCell4 and, with appropriate simplifying assumptions, also in the BioNetGen simulation environment, greatly accelerating and simplifying model validation and comparison.
Collapse
Affiliation(s)
- Adam Husar
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Mariam Ordyan
- Institute for Neural Computations, University of California, San Diego, La Jolla, California, United States of America
| | - Guadalupe C. Garcia
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Joel G. Yancey
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Ali S. Saglam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M. Bartol
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Terrence J. Sejnowski
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute for Neural Computations, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Abrams RE, Pierre K, El-Murr N, Seung E, Wu L, Luna E, Mehta R, Li J, Larabi K, Ahmed M, Pelekanou V, Yang ZY, van de Velde H, Stamatelos SK. Quantitative systems pharmacology modeling sheds light into the dose response relationship of a trispecific T cell engager in multiple myeloma. Sci Rep 2022; 12:10976. [PMID: 35768621 PMCID: PMC9243109 DOI: 10.1038/s41598-022-14726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/10/2022] [Indexed: 02/08/2023] Open
Abstract
In relapsed and refractory multiple myeloma (RRMM), there are few treatment options once patients progress from the established standard of care. Several bispecific T-cell engagers (TCE) are in clinical development for multiple myeloma (MM), designed to promote T-cell activation and tumor killing by binding a T-cell receptor and a myeloma target. In this study we employ both computational and experimental tools to investigate how a novel trispecific TCE improves activation, proliferation, and cytolytic activity of T-cells against MM cells. In addition to binding CD3 on T-cells and CD38 on tumor cells, the trispecific binds CD28, which serves as both co-stimulation for T-cell activation and an additional tumor target. We have established a robust rule-based quantitative systems pharmacology (QSP) model trained against T-cell activation, cytotoxicity, and cytokine data, and used it to gain insight into the complex dose response of this drug. We predict that CD3-CD28-CD38 killing capacity increases rapidly in low dose levels, and with higher doses, killing plateaus rather than following the bell-shaped curve typical of bispecific TCEs. We further predict that dose–response curves are driven by the ability of tumor cells to form synapses with activated T-cells. When competition between cells limits tumor engagement with active T-cells, response to therapy may be diminished. We finally suggest a metric related to drug efficacy in our analysis—“effective” receptor occupancy, or the proportion of receptors engaged in synapses. Overall, this study predicts that the CD28 arm on the trispecific antibody improves efficacy, and identifies metrics to inform potency of novel TCEs.
Collapse
Affiliation(s)
- R E Abrams
- Sanofi, 55 Corporate Dr, Bridgewater, NJ, 08807, USA.,Daichi Sankyo, 211 Mt. Airy Rd., Basking Ridge, NJ, 07920, USA
| | - K Pierre
- Sanofi, 55 Corporate Dr, Bridgewater, NJ, 08807, USA.
| | - N El-Murr
- Sanofi, 13 quai Jules Guesde 94403 Cedex, VITRY-SUR-SEINE, Vitry/Alfortville, France
| | - E Seung
- Sanofi, 270 Albany St., Cambridge, MA, 02139, USA.,Modex Therapeutics, 22 Strathmore Road, Natick, MA, 01760, USA
| | - L Wu
- Sanofi, 270 Albany St., Cambridge, MA, 02139, USA.,Modex Therapeutics, 22 Strathmore Road, Natick, MA, 01760, USA
| | | | | | - J Li
- Sanofi, 55 Corporate Dr, Bridgewater, NJ, 08807, USA
| | - K Larabi
- Sanofi, 13 quai Jules Guesde 94403 Cedex, VITRY-SUR-SEINE, Vitry/Alfortville, France
| | - M Ahmed
- Sanofi, 50 Binney St., Cambridge, MA, 02142, USA
| | - V Pelekanou
- Sanofi, 50 Binney St., Cambridge, MA, 02142, USA.,Bayer Pharmaceuticals, Cambridge, MA, 02142, USA
| | - Z-Y Yang
- Sanofi, 270 Albany St., Cambridge, MA, 02139, USA.,Modex Therapeutics, 22 Strathmore Road, Natick, MA, 01760, USA
| | | | - S K Stamatelos
- Sanofi, 55 Corporate Dr, Bridgewater, NJ, 08807, USA. .,Bayer Pharmaceuticals, PH100 Bayer Boulevard, Whippany, NJ, 07981, USA.
| |
Collapse
|
4
|
Sánchez-Gutiérrez ME, González-Pérez PP. Modeling and Simulation of Cell Signaling Networks for Subsequent Analytics Processes Using Big Data and Machine Learning. Bioinform Biol Insights 2022; 16:11779322221091739. [PMID: 35478994 PMCID: PMC9036331 DOI: 10.1177/11779322221091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
This work explores how much the traditional approach to modeling and simulation of biological systems, specifically cell signaling networks, can be increased and improved by integrating big data, data mining, and machine learning techniques. Specifically, we first model, simulate, validate, and calibrate the behavior of the PI3K/AKT/mTOR cancer-related signaling pathway. Subsequently, once the behavior of the simulated signaling network matches the expected behavior, the capacity of the computational simulation is increased to grow data (data farming). First, we use big data techniques to extract, collect, filter, and store large volumes of data describing all the interactions among the simulated cell signaling system components over time. Afterward, we apply data mining and machine learning techniques-specifically, exploratory data analysis, feature selection techniques, and supervised neural network models-to the resulting biological dataset to obtain new inferences and knowledge about this biological system. The results showed how the traditional approach to the simulation of biological systems could be enhanced and improved by incorporating big data, data mining, and machine learning techniques, which significantly contributed to increasing the predictive power of the simulation.
Collapse
Affiliation(s)
| | - Pedro Pablo González-Pérez
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México,Pedro Pablo González-Pérez, Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348, Ciudad de México, México.
| |
Collapse
|
5
|
Data-driven learning how oncogenic gene expression locally alters heterocellular networks. Nat Commun 2022; 13:1986. [PMID: 35418177 PMCID: PMC9007999 DOI: 10.1038/s41467-022-29636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Developing drugs increasingly relies on mechanistic modeling and simulation. Models that capture causal relations among genetic drivers of oncogenesis, functional plasticity, and host immunity complement wet experiments. Unfortunately, formulating such mechanistic cell-level models currently relies on hand curation, which can bias how data is interpreted or the priority of drug targets. In modeling molecular-level networks, rules and algorithms are employed to limit a priori biases in formulating mechanistic models. Here we combine digital cytometry with Bayesian network inference to generate causal models of cell-level networks linking an increase in gene expression associated with oncogenesis with alterations in stromal and immune cell subsets from bulk transcriptomic datasets. We predict how increased Cell Communication Network factor 4, a secreted matricellular protein, alters the tumor microenvironment using data from patients diagnosed with breast cancer and melanoma. Predictions are then tested using two immunocompetent mouse models for melanoma, which provide consistent experimental results. While mechanistic models play increasing roles in immuno-oncology, hand network curation is current practice. Here the authors use a Bayesian data-driven approach to infer how expression of a secreted oncogene alters the cellular landscape within the tumor.
Collapse
|
6
|
Groß A, Kracher B, Kraus JM, Kühlwein SD, Pfister AS, Wiese S, Luckert K, Pötz O, Joos T, Van Daele D, De Raedt L, Kühl M, Kestler HA. Representing dynamic biological networks with multi-scale probabilistic models. Commun Biol 2019; 2:21. [PMID: 30675519 PMCID: PMC6336720 DOI: 10.1038/s42003-018-0268-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
Dynamic models analyzing gene regulation and metabolism face challenges when adapted to modeling signal transduction networks. During signal transduction, molecular reactions and mechanisms occur in different spatial and temporal frames and involve feedbacks. This impedes the straight-forward use of methods based on Boolean networks, Bayesian approaches, and differential equations. We propose a new approach, ProbRules, that combines probabilities and logical rules to represent the dynamics of a system across multiple scales. We demonstrate that ProbRules models can represent various network motifs of biological systems. As an example of a comprehensive model of signal transduction, we provide a Wnt network that shows remarkable robustness under a range of phenotypical and pathological conditions. Its simulation allows the clarification of controversially discussed molecular mechanisms of Wnt signaling by predicting wet-lab measurements. ProbRules provides an avenue in current computational modeling by enabling systems biologists to integrate vast amounts of available data on different scales.
Collapse
Affiliation(s)
- Alexander Groß
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Barbara Kracher
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Silke D. Kühlwein
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Astrid S. Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Katrin Luckert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Thomas Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Dries Van Daele
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Luc De Raedt
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
7
|
Hlavacek WS, Csicsery-Ronay JA, Baker LR, Ramos Álamo MDC, Ionkov A, Mitra ED, Suderman R, Erickson KE, Dias R, Colvin J, Thomas BR, Posner RG. A Step-by-Step Guide to Using BioNetFit. Methods Mol Biol 2019; 1945:391-419. [PMID: 30945257 DOI: 10.1007/978-1-4939-9102-0_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BioNetFit is a software tool designed for solving parameter identification problems that arise in the development of rule-based models. It solves these problems through curve fitting (i.e., nonlinear regression). BioNetFit is compatible with deterministic and stochastic simulators that accept BioNetGen language (BNGL)-formatted files as inputs, such as those available within the BioNetGen framework. BioNetFit can be used on a laptop or stand-alone multicore workstation as well as on many Linux clusters, such as those that use the Slurm Workload Manager to schedule jobs. BioNetFit implements a metaheuristic population-based global optimization procedure, an evolutionary algorithm (EA), to minimize a user-defined objective function, such as a residual sum of squares (RSS) function. BioNetFit also implements a bootstrapping procedure for determining confidence intervals for parameter estimates. Here, we provide step-by-step instructions for using BioNetFit to estimate the values of parameters of a BNGL-encoded model and to define bootstrap confidence intervals. The process entails the use of several plain-text files, which are processed by BioNetFit and BioNetGen. In general, these files include (1) one or more EXP files, which each contains (experimental) data to be used in parameter identification/bootstrapping; (2) a BNGL file containing a model section, which defines a (rule-based) model, and an actions section, which defines simulation protocols that generate GDAT and/or SCAN files with model predictions corresponding to the data in the EXP file(s); and (3) a CONF file that configures the fitting/bootstrapping job and that defines algorithmic parameter settings.
Collapse
Affiliation(s)
- William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jennifer A Csicsery-Ronay
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lewis R Baker
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Applied Mathematics, University of Colorado, Boulder, CO, USA
| | - María Del Carmen Ramos Álamo
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alexander Ionkov
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Immunetrics, Inc., Pittsburgh, PA, USA
| | - Keesha E Erickson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Raquel Dias
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Joshua Colvin
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Brandon R Thomas
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
8
|
Tapia JJ, Saglam AS, Czech J, Kuczewski R, Bartol TM, Sejnowski TJ, Faeder JR. MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework. Methods Mol Biol 2019; 1945:203-229. [PMID: 30945248 PMCID: PMC6580425 DOI: 10.1007/978-1-4939-9102-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spatial heterogeneity can have dramatic effects on the biochemical networks that drive cell regulation and decision-making. For this reason, a number of methods have been developed to model spatial heterogeneity and incorporated into widely used modeling platforms. Unfortunately, the standard approaches for specifying and simulating chemical reaction networks become untenable when dealing with multistate, multicomponent systems that are characterized by combinatorial complexity. To address this issue, we developed MCell-R, a framework that extends the particle-based spatial Monte Carlo simulator, MCell, with the rule-based model specification and simulation capabilities provided by BioNetGen and NFsim. The BioNetGen syntax enables the specification of biomolecules as structured objects whose components can have different internal states that represent such features as covalent modification and conformation and which can bind components of other molecules to form molecular complexes. The network-free simulation algorithm used by NFsim enables efficient simulation of rule-based models even when the size of the network implied by the biochemical rules is too large to enumerate explicitly, which frequently occurs in detailed models of biochemical signaling. The result is a framework that can efficiently simulate systems characterized by combinatorial complexity at the level of spatially resolved individual molecules over biologically relevant time and length scales.
Collapse
Affiliation(s)
- Jose-Juan Tapia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali Sinan Saglam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob Czech
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robert Kuczewski
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas M. Bartol
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Sekar JAP, Tapia JJ, Faeder JR. Automated visualization of rule-based models. PLoS Comput Biol 2017; 13:e1005857. [PMID: 29131816 PMCID: PMC5703574 DOI: 10.1371/journal.pcbi.1005857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/27/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022] Open
Abstract
Frameworks such as BioNetGen, Kappa and Simmune use "reaction rules" to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models.
Collapse
Affiliation(s)
- John Arul Prakash Sekar
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jose-Juan Tapia
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James R. Faeder
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
10
|
Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol 2016; 78:2091-2134. [PMID: 27714570 PMCID: PMC5069344 DOI: 10.1007/s11538-016-0214-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
Collapse
|
11
|
Manes NP, Angermann BR, Koppenol-Raab M, An E, Sjoelund VH, Sun J, Ishii M, Germain RN, Meier-Schellersheim M, Nita-Lazar A. Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing. Mol Cell Proteomics 2015. [PMID: 26199343 DOI: 10.1074/mcp.m115.048918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteoclasts are monocyte-derived multinuclear cells that directly attach to and resorb bone. Sphingosine-1-phosphate (S1P)(1) regulates bone resorption by functioning as both a chemoattractant and chemorepellent of osteoclast precursors through two G-protein coupled receptors that antagonize each other in an S1P-concentration-dependent manner. To quantitatively explore the behavior of this chemosensing pathway, we applied targeted proteomics, transcriptomics, and rule-based pathway modeling using the Simmune toolset. RAW264.7 cells (a mouse monocyte/macrophage cell line) were used as model osteoclast precursors, RNA-seq was used to identify expressed target proteins, and selected reaction monitoring (SRM) mass spectrometry using internal peptide standards was used to perform absolute abundance measurements of pathway proteins. The resulting transcript and protein abundance values were strongly correlated. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses toward stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrate the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight.
Collapse
Affiliation(s)
- Nathan P Manes
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Bastian R Angermann
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Marijke Koppenol-Raab
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Eunkyung An
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Virginie H Sjoelund
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Jing Sun
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Masaru Ishii
- §Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ronald N Germain
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Martin Meier-Schellersheim
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Aleksandra Nita-Lazar
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421;
| |
Collapse
|
12
|
Chylek LA, Harris LA, Faeder JR, Hlavacek WS. Modeling for (physical) biologists: an introduction to the rule-based approach. Phys Biol 2015; 12:045007. [PMID: 26178138 PMCID: PMC4526164 DOI: 10.1088/1478-3975/12/4/045007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leonard A Harris
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
13
|
Wenskovitch JE, Harris LA, Tapia JJ, Faeder JR, Marai GE. MOSBIE: a tool for comparison and analysis of rule-based biochemical models. BMC Bioinformatics 2014; 15:316. [PMID: 25253680 PMCID: PMC4261755 DOI: 10.1186/1471-2105-15-316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Mechanistic models that describe the dynamical behaviors of biochemical systems are common in computational systems biology, especially in the realm of cellular signaling. The development of families of such models, either by a single research group or by different groups working within the same area, presents significant challenges that range from identifying structural similarities and differences between models to understanding how these differences affect system dynamics. Results We present the development and features of an interactive model exploration system, MOSBIE, which provides utilities for identifying similarities and differences between models within a family. Models are clustered using a custom similarity metric, and a visual interface is provided that allows a researcher to interactively compare the structures of pairs of models as well as view simulation results. Conclusions We illustrate the usefulness of MOSBIE via two case studies in the cell signaling domain. We also present feedback provided by domain experts and discuss the benefits, as well as the limitations, of the approach. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-316) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - G Elisabeta Marai
- Electronic Visualization Lab, Department of Computer Science, University of Illinois at Chicago, 60607 Chicago, USA.
| |
Collapse
|
14
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
15
|
Hogg JS, Harris LA, Stover LJ, Nair NS, Faeder JR. Exact hybrid particle/population simulation of rule-based models of biochemical systems. PLoS Comput Biol 2014; 10:e1003544. [PMID: 24699269 PMCID: PMC3974646 DOI: 10.1371/journal.pcbi.1003544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. Rule-based modeling is a modeling paradigm that addresses the problem of combinatorial complexity in biochemical systems. The key idea is to specify only those components of a biological macromolecule that are directly involved in a biochemical transformation. Until recently, this “pattern-based” approach greatly simplified the process of model building but did nothing to improve the performance of model simulation. This changed with the introduction of “network-free” simulation methods, which operate directly on the compressed rule set of a rule-based model rather than on a fully-enumerated set of reactions and species. However, these methods represent every molecule in a system as a particle, limiting their use to systems containing less than a few million molecules. Here, we describe an extension to the network-free approach that treats rare, complex species as particles and plentiful, simple species as population variables, while retaining the exact dynamics of the model system. By making more efficient use of computational resources for species that do not require the level of detail of a particle representation, this hybrid particle/population approach can simulate systems much larger than is possible using network-free methods and is an important step towards realizing the practical simulation of detailed, mechanistic models of whole cells.
Collapse
Affiliation(s)
- Justin S. Hogg
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Leonard A. Harris
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lori J. Stover
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Niketh S. Nair
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Andrieux G, Le Borgne M, Théret N. An integrative modeling framework reveals plasticity of TGF-β signaling. BMC SYSTEMS BIOLOGY 2014; 8:30. [PMID: 24618419 PMCID: PMC4007780 DOI: 10.1186/1752-0509-8-30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022]
Abstract
Background The TGF-β transforming growth factor is the most pleiotropic cytokine controlling a broad range of cellular responses that include proliferation, differentiation and apoptosis. The context-dependent multifunctional nature of TGF-β is associated with complex signaling pathways. Differential models describe the dynamics of the TGF-β canonical pathway, but modeling the non-canonical networks constitutes a major challenge. Here, we propose a qualitative approach to explore all TGF-β-dependent signaling pathways. Results Using a new formalism, CADBIOM, which is based on guarded transitions and includes temporal parameters, we have built the first discrete model of TGF-β signaling networks by automatically integrating the 137 human signaling maps from the Pathway Interaction Database into a single unified dynamic model. Temporal property-checking analyses of 15934 trajectories that regulate 145 TGF-β target genes reveal the association of specific pathways with distinct biological processes. We identify 31 different combinations of TGF-β with other extracellular stimuli involved in non-canonical TGF-β pathways that regulate specific gene networks. Extensive analysis of gene expression data further demonstrates that genes sharing CADBIOM trajectories tend to be co-regulated. Conclusions As applied here to TGF-β signaling, CADBIOM allows, for the first time, a full integration of highly complex signaling pathways into dynamic models that permit to explore cell responses to complex microenvironment stimuli.
Collapse
Affiliation(s)
| | | | - Nathalie Théret
- INSERM U1085, IRSET, Université de Rennes 1, 2 avenue Pr Léon Bernard, 35043 Rennes, France.
| |
Collapse
|
17
|
Chylek LA, Harris LA, Tung CS, Faeder JR, Lopez CF, Hlavacek WS. Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:13-36. [PMID: 24123887 PMCID: PMC3947470 DOI: 10.1002/wsbm.1245] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/04/2023]
Abstract
Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and posttranslational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation).
Collapse
Affiliation(s)
- Lily A. Chylek
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Leonard A. Harris
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Chang-Shung Tung
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Carlos F. Lopez
- Department of Cancer Biology and Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - William S. Hlavacek
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
18
|
|