3
|
Wang E, Sorolla A, Cunningham PT, Bogdawa HM, Beck S, Golden E, Dewhurst RE, Florez L, Cruickshank MN, Hoffmann K, Hopkins RM, Kim J, Woo AJ, Watt PM, Blancafort P. Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2018; 38:140-150. [PMID: 30076412 PMCID: PMC6318000 DOI: 10.1038/s41388-018-0421-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/24/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Overexpression of MYC oncogene is highly prevalent in many malignancies such as aggressive triple-negative breast cancers (TNBCs) and it is associated with very poor outcome. Despite decades of research, attempts to effectively inhibit MYC, particularly with small molecules, still remain challenging due to the featureless nature of its protein structure. Herein, we describe the engineering of the dominant-negative MYC peptide (OmoMYC) linked to a functional penetrating 'Phylomer' peptide (FPPa) as a therapeutic strategy to inhibit MYC in TNBC. We found FPPa-OmoMYC to be a potent inducer of apoptosis (with IC50 from 1-2 µM) in TNBC cells with negligible effects in non-tumorigenic cells. Transcriptome analysis of FPPa-OmoMYC-treated cells indicated that the fusion protein inhibited MYC-dependent networks, inducing dynamic changes in transcriptional, metabolic, and apoptotic processes. We demonstrated the efficacy of FPPa-OmoMYC in inhibiting breast cancer growth when injected orthotopically in TNBC allografts. Lastly, we identified strong pharmacological synergisms between FPPa-OmoMYC and chemotherapeutic agents. This study highlights a novel therapeutic approach to target highly aggressive and chemoresistant MYC-activated cancers.
Collapse
Affiliation(s)
- Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Paula T Cunningham
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Heique M Bogdawa
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Samuel Beck
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, 04672, USA
| | - Emily Golden
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Robert E Dewhurst
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Laura Florez
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Mark N Cruickshank
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Katrin Hoffmann
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | | | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew J Woo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Paul M Watt
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia. .,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia.
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia. .,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
5
|
Jefferies R, Yang R, Woh CK, Weldt T, Milech N, Estcourt A, Armstrong T, Hopkins R, Watt P, Reid S, Armson A, Ryan UM. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer(®) peptides. Exp Parasitol 2014; 148:40-8. [PMID: 25447124 DOI: 10.1016/j.exppara.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/07/2014] [Indexed: 01/03/2023]
Abstract
Cryptosporidiosis, a gastroenteric disease characterised mainly by diarrheal illnesses in humans and mammals is caused by infection with the protozoan parasite Cryptosporidium. Treatment options for cryptosporidiosis are limited, with the current therapeutic nitazoxanide, only partly efficacious in immunocompetent individuals. The parasite lacks de novo purine synthesis, and is exclusively dependant on purine salvage from its host. Inhibition of the inosine 5' monophosphate dehydrogenase (IMPDH), a purine salvage enzyme that is essential for DNA synthesis, thereby offers a potential drug target against this parasite. In the present study, a yeast-two-hybrid system was used to identify Phylomer peptides within a library constructed from the genomes of 25 phylogenetically diverse bacteria that targeted the IMPDH of Cryptosporidium parvum (IMPcp) and Cryptosporidium hominis (IMPch). We identified 38 unique interacting Phylomers, of which, 12 were synthesised and screened against C. parvum in vitro. Two Phylomers exhibited significant growth inhibition (81.2-83.8% inhibition; P < 0.05), one of which consistently exhibited positive interactions with IMPcp and IMPch during primary and recapitulation yeast two-hybrid screening and did not interact with either of the human IMPDH proteins. The present study highlightsthe potential of Phylomer peptides as target validation tools for Cryptosporidium and other organisms and diseases because of their ability to bind with high affinity to target proteins and disrupt function.
Collapse
Affiliation(s)
- R Jefferies
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia; Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - R Yang
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - C K Woh
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia; Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - T Weldt
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - N Milech
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - A Estcourt
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - T Armstrong
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - R Hopkins
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - P Watt
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - S Reid
- School of Population Health, The University of Queensland, Herston, Queensland, Australia
| | - A Armson
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - U M Ryan
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia.
| |
Collapse
|
6
|
Hennemann H, Wirths S, Carl C. Cell-based peptide screening to access the undruggable target space. Eur J Med Chem 2014; 94:489-96. [PMID: 25458182 DOI: 10.1016/j.ejmech.2014.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023]
Abstract
Only 20-30% of drug target proteins can be accessed by common drug classes, like small molecules or therapeutic antibodies. The vast majority of the remaining proteins are considered "undruggable" and include drug target proteins, like transcription factors, scaffold or adapter proteins, which play important roles in disease. However over the last years innovative compound classes including nucleotide derived drugs (e.g. siRNA, antisense), macrocyclic compounds and cell-permeable peptides matured significantly and hold now the potential to modulate these hard to access target proteins for therapeutic use. This article will focus on the discovery of cell-permeable peptides and discuss intracellular screening systems for peptides, which yield highly relevant peptides, because peptide selection takes place in eukaryotic cells, under conditions, which are very similar to the later therapeutic use.
Collapse
Affiliation(s)
| | - Sabine Wirths
- Nexigen GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Claudia Carl
- Nexigen GmbH, Nattermannallee 1, 50829 Cologne, Germany
| |
Collapse
|