1
|
Langreder N, Schäckermann D, Unkauf T, Schubert M, Frenzel A, Bertoglio F, Hust M. Antibody Affinity and Stability Maturation by Error-Prone PCR. Methods Mol Biol 2023; 2702:395-410. [PMID: 37679631 DOI: 10.1007/978-1-0716-3381-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Human antibodies are the most important class of biologicals, and antibodies - human and nonhuman - are indispensable as research agents and for diagnostic assays. When generating antibodies, they sometimes show the desired specificity profile but lack sufficient affinity for the desired application. In this article, a phage display-based method and protocol to increase the affinity of recombinant antibody fragments is given.The given protocol starts with the construction of a mutated antibody gene library by error-prone PCR. Subsequently, the selection of high-affinity variants is performed by panning on immobilized antigen with washing conditions optimized for off-rate-dependent selection. A screening ELISA protocol to identify antibodies with improved affinity and an additional protocol to select antibodies with improved thermal stability is described.
Collapse
Affiliation(s)
- Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dorina Schäckermann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Wirtschaftsgenossenschaft deutscher Tierärzte eG (WDT), Garbsen, Germany
| | - Tobias Unkauf
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Bayer Consumer Care AG, Basel, Switzerland
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- YUMAB GmbH, Science Campus Braunschweig-Süd, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Fiebig D, Bogen JP, Carrara SC, Deweid L, Zielonka S, Grzeschik J, Hock B, Kolmar H. Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells. Front Bioeng Biotechnol 2022; 10:794389. [PMID: 35620472 PMCID: PMC9127228 DOI: 10.3389/fbioe.2022.794389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 01/18/2023] Open
Abstract
Yeast-surface display (YSD) is commonly applied to screen Fab immune or naïve libraries for binders of predefined target molecules. However, reformatting of isolated variants represents a time-intensive bottleneck. Herein, we present a novel approach to facilitate a lean transition from antibody screening using YSD Fab libraries to the production of full-length IgG antibodies in Expi293-F cells. In this study, utilizing Golden Gate Cloning (GGC) and a bidirectional promoter system, an exemplary Fab-displaying YSD library was generated based on immunised transgene rats. After subsequent screening for antigen-specific antibody candidates by fluorescence-activated cell sorting (FACS), the Fab-encoding genes were subcloned into a bidirectional mammalian expression vector, exhibiting CH2-CH3 encoding genes, in a GGC-mediated, PCR-free manner. This novel, straightforward and time-saving workflow allows the VH/VL pairing to be preserved. This study resulted in antibody variants exhibiting suitable biophysical properties and covered a broad VH diversity after two rounds of FACS screening, as revealed by NGS analysis. Ultimately, we demonstrate that the implication of such a gene transfer system streamlines antibody hit discovery efforts, allowing the faster characterisation of antibodies against a plethora of targets that may lead to new therapeutic agents.
Collapse
Affiliation(s)
- David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratories, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Björn Hock
- Ferring Biologics Innovation Centre, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Hemadou A, Fontayne A, Laroche-Traineau J, Ottones F, Mondon P, Claverol S, Ducasse É, Sanchez S, Mohamad S, Lorenzato C, Duonor-Cerutti M, Clofent-Sanchez G, Jacobin-Valat MJ. In Vivo Human Single-Chain Fragment Variable Phage Display-Assisted Identification of Galectin-3 as a New Biomarker of Atherosclerosis. J Am Heart Assoc 2021; 10:e016287. [PMID: 34569248 PMCID: PMC8649142 DOI: 10.1161/jaha.120.016287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Atherosclerosis is a complex pathology in which dysfunctional endothelium, activated leucocytes, macrophages, and lipid‐laden foam cells are implicated, and in which plaque disruption is driven by many putative actors. This study aimed to identify accurate targetable biomarkers using new in vivo approaches to propose tools for improved diagnosis and treatment. Methods and Results Human scFv (single‐chain fragment variable) selected by in vivo phage display in a rabbit model of atherosclerosis was reformatted as scFv fused to the scFv‐Fc (single‐chain fragment variable fused to the crystallizable fragment of immunoglobulin G format) antibodies. Their reactivity was tested using flow cytometry and immunoassays, and aorta sections from animal models and human carotid and coronary artery specimens. A pool of atherosclerotic proteins from human endarterectomies was co‐immunoprecipitated with the selected scFv‐Fc followed by mass spectrometry for target identification. Near‐infrared fluorescence imaging was performed in Apoe−/− mice after injection of an Alexa Fluor 647–labeled scFv‐Fc‐2c antibody produced in a baculovirus system with 2 additional cysteine residues (ie, 2c) for future coupling to nano‐objects for theranostic applications. One scFv‐Fc clone (P3) displayed the highest cross‐reactivity against atherosclerotic lesion sections (rabbit, mouse, and human) and was chosen for translational development. Mass spectrometry identified galectin‐3, a β‐galactoside‐binding lectin, as the leader target. ELISA and immunofluorescence assays with a commercial anti‐galectin‐3 antibody confirmed this specificity. P3 scFv‐Fc‐2c specifically targeted atherosclerotic plaques in the Apoe−/− mouse model. Conclusions These results provide evidence that the P3 antibody holds great promise for molecular imaging of atherosclerosis and other inflammatory pathologies involving macrophages. Recently, galectin‐3 was proposed as a high‐value biomarker for the assessment of coronary and carotid atherosclerosis.
Collapse
Affiliation(s)
- Audrey Hemadou
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | - Alexandre Fontayne
- LFB (Laboratoire Français de Fractionnement et de Biotechnologies) Biotechnologies Lille France.,BE4S (Bio-Experts for Success) Croix France
| | - Jeanny Laroche-Traineau
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | - Florence Ottones
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | - Philippe Mondon
- LFB (Laboratoire Français de Fractionnement et de Biotechnologies) Biotechnologies Lille France
| | - Stéphane Claverol
- Protéome Pole CGFB (Centre de Génomique Fonctionnelle de Bordeaux) Bordeaux France
| | | | - Stéphane Sanchez
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | - Sarah Mohamad
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | - Cyril Lorenzato
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | | | - Gisèle Clofent-Sanchez
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| | - Marie-Josée Jacobin-Valat
- CRMSB (Centre de Resonance Magnétique des Systèmes Biologiques)UMR5536 CNRS (Centre National de Recherche Scientifique)INSB (Institut National des Sciences Biologiques) Bordeaux France
| |
Collapse
|
4
|
Navabi P, Ganjalikhany MR, Jafari S, Dehbashi M, Ganjalikhani-Hakemi M. Designing and generating a single-chain fragment variable (scFv) antibody against IL2Rα (CD25): An in silico and in vitro study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:360-368. [PMID: 33995947 PMCID: PMC8087844 DOI: 10.22038/ijbms.2021.51709.11728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/19/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES IL-2Rα plays a critical role in maintaining immune function. However, expression and secretion of CD25 in various malignant disorders and autoimmune diseases are now well established. Thus, CD25 is considered an important target candidate for antibody-based therapy. This study aimed to find the most suitable linker peptide to construct a functional anti-CD25 single-chain fragment variable (scFv) by bioinformatics studies and its production in a bacterial expression system. MATERIALS AND METHODS Here, the 3D structures of the scFvs with different linkers were predicted and molecular dynamics simulation was performed to compare their structures and dynamics. Then, interactions between five models of scFv and human CD25 were calculated via molecular docking. According to MD and docking results, the anti-CD25 scFvs with (Gly4Ser)3 linker were constructed and cloned into pET-22b(+). Then, recombinant plasmids were transformed into Escherichia coli Bl21 (DE3) for expression using IPTG and lactose as inducers. Anti-CD25 scFv was purified from the periplasm and detected by SDS-PAGE and Western blot. Afterward, functionality was evaluated using ELISA. RESULTS In silico analysis showed that the model containing (Gly4Ser)3 as a linker has more stability compared with other linkers. The results of SDS-PAGE, Western blot, and ELISA confirmed the accuracy of anti-CD25 scFv production and its ability to bind to the human CD25. CONCLUSION Conclusively, our work provides a theoretical and experimental basis for production of an anti-CD25 scFv, which may be applied for various malignant disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Parnian Navabi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepideh Jafari
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
5
|
Vostakolaei MA, Molavi O, Hejazi MS, Kordi S, Rahmati S, Barzegari A, Abdolalizadeh J. Isolation and characterization of a novel scFv antibody fragments specific for Hsp70 as a tumor biomarker. J Cell Biochem 2019; 120:14711-14724. [DOI: 10.1002/jcb.28732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Mehdi Asghari Vostakolaei
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
- Biotechnology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Shirafkan Kordi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Saman Rahmati
- Medical Biotechnology Department Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Abolfazl Barzegari
- Research Centre for Pharmaceutical Nanotechnology Tabriz University of Medical Sciences Tabriz Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Paramedical Faculty Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
6
|
Sefid F, Payandeh Z, Azamirad G, Abdolhamidi R, Rasooli I. In Silico Engineering Towards Enhancement of Bap–VHH Monoclonal Antibody Binding Affinity. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9670-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
Antibodies are the fastest growing class of pharmaceutical proteins and essential tools for research and diagnostics. Often antibodies do show a desirable specificity profile but lack sufficient affinity for the desired application. Here, we describe a method to increase the affinity of recombinant antibody fragments based on the construction of mutagenized phage display libraries.After the construction of a mutated antibody gene library by error-prone PCR, selection of high-affinity variants is either performed by panning in solution or on immobilized antigen with washing conditions optimized for off-rate-dependent selection. An additional screening protocol to identify antibodies with improved thermal stability is described.
Collapse
Affiliation(s)
- Tobias Unkauf
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
- YUMAB GmbH, Braunschweig, Germany.
| |
Collapse
|
8
|
Xiao X, Douthwaite JA, Chen Y, Kemp B, Kidd S, Percival-Alwyn J, Smith A, Goode K, Swerdlow B, Lowe D, Wu H, Dall'Acqua WF, Chowdhury PS. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. MAbs 2017; 9:996-1006. [PMID: 28613102 DOI: 10.1080/19420862.2017.1337617] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.
Collapse
Affiliation(s)
- Xiaodong Xiao
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - Julie A Douthwaite
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Yan Chen
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - Ben Kemp
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Sara Kidd
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | | | - Alison Smith
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Kate Goode
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Bonnie Swerdlow
- c Department of Respiratory, Inflammation and Autoimmune Diseases , Gaithersburg , MD , USA
| | - David Lowe
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Herren Wu
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - William F Dall'Acqua
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - Partha S Chowdhury
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| |
Collapse
|
9
|
Wang D, Yue Y, Wu G, Tian Y, Liu Y, Yu J, Ji Y, Wang J, Li J, Pan R, Ma H, Zhang G. Preparation and characterization of a human scFv against the Clostridium perfringens type A alpha-toxin. Toxicon 2017; 130:79-86. [DOI: 10.1016/j.toxicon.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/30/2023]
|
10
|
Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG, Meyer RE, Fishburn MW, Cabrera C, Patel PP, Frew E, Chen Y, Chang L, Ferrell EP, von Einem V, McGuigan W, Reinhardt M, Sayer H, Vielsack C, Duffy DC. The Simoa HD-1 Analyzer. ACTA ACUST UNITED AC 2016; 21:533-47. [DOI: 10.1177/2211068215589580] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 01/27/2023]
|
11
|
Moradi-Kalbolandi S, Davani D, Golkar M, Habibi-Anbouhi M, Abolhassani M, Shokrgozar MA. Soluble Expression and Characterization of a New scFv Directed to Human CD123. Appl Biochem Biotechnol 2016; 178:1390-406. [DOI: 10.1007/s12010-015-1954-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022]
|
12
|
Chen L, Kutskova YA, Hong F, Memmott JE, Zhong S, Jenkinson MD, Hsieh CM. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. Protein Eng Des Sel 2015; 28:427-35. [PMID: 26337062 DOI: 10.1093/protein/gzv042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
Abstract
Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.
Collapse
Affiliation(s)
- Lei Chen
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Feng Hong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - John E Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Suju Zhong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Megan D Jenkinson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Chung-Ming Hsieh
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T. The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs 2014; 6:204-18. [PMID: 24262918 PMCID: PMC3929444 DOI: 10.4161/mabs.27227] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.
In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.
Collapse
|
14
|
Kiyoshi M, Caaveiro JMM, Miura E, Nagatoishi S, Nakakido M, Soga S, Shirai H, Kawabata S, Tsumoto K. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex. PLoS One 2014; 9:e87099. [PMID: 24475232 PMCID: PMC3903617 DOI: 10.1371/journal.pone.0087099] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022] Open
Abstract
The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM) for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1). We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101) is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody). Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu). The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier) benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.
Collapse
Affiliation(s)
- Masato Kiyoshi
- Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Jose M. M. Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Eri Miura
- Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Shinji Soga
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Hiroki Shirai
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Shigeki Kawabata
- Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Kouhei Tsumoto
- Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Monnet C, Jorieux S, Souyris N, Zaki O, Jacquet A, Fournier N, Crozet F, de Romeuf C, Bouayadi K, Urbain R, Behrens CK, Mondon P, Fontayne A. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody. MAbs 2014; 6:422-36. [PMID: 24492301 DOI: 10.4161/mabs.27854] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGen™) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling(®) platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.
Collapse
|
16
|
Isolation, identification and expression of specific human CD133 antibodies. Sci Rep 2013; 3:3320. [PMID: 24271022 PMCID: PMC6505967 DOI: 10.1038/srep03320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022] Open
Abstract
CD133, a 120 KDa glycoprotein is a transmembrane glycoprotein which has been recently used as a cancer stem cell (CSCs) marker in a variety of carcinomas. CD133+ cells possess strong tumorigenicity, responsible for tumor initiation and maintenance. Therefore, the goal of our study was to develop a novel CD133 humanized antibody as a promising target for cancer therapy. CD133 purified proteins were used for panning the naive human-semi-synthetic Tomlinson I + J phagemid library. The second extracellular domain (loop1) and the third extracellular domain (loop2) of CD133 were expressed in E. coli. In this study, we adopted a novel five-round selection strategy based on moderate stringent selection during the first rounds. This unique strategy was aimed at avoiding the loss of rare phages with high affinity to target proteins. After the five rounds of specific panning, six phage-antibody clones which specifically recognized recombinant human CD133 protein were obtained. The desirable phage clone named CD133-scFv-1 was cloned into the expression vector, then induced and purified. We show that CD133-scFv-1 and commercial murine antibody 293C3 could compete with each other in the indirect competitive immunoassay. Our work may lay the groundwork for future studies involving biological functions and applications of the CD133 humanized antibody.
Collapse
|