1
|
Dawson RE, Deswaerte V, West AC, Sun E, Wray‐McCann G, Livis T, Kumar B, Rodriguez E, Gabay C, Ferrero RL, Jenkins BJ. The cytosolic DNA sensor AIM2 promotes Helicobacter-induced gastric pathology via the inflammasome. Immunol Cell Biol 2023; 101:444-457. [PMID: 36967659 PMCID: PMC10952813 DOI: 10.1111/imcb.12641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Helicobacter pylori (H. pylori) infection can trigger chronic gastric inflammation perpetuated by overactivation of the innate immune system, leading to a cascade of precancerous lesions culminating in gastric cancer. However, key regulators of innate immunity that promote H. pylori-induced gastric pathology remain ill-defined. The innate immune cytosolic DNA sensor absent in melanoma 2 (AIM2) contributes to the pathogenesis of numerous autoimmune and chronic inflammatory diseases, as well as cancers including gastric cancer. We therefore investigated whether AIM2 contributed to the pathogenesis of Helicobacter-induced gastric disease. Here, we reveal that AIM2 messenger RNA and protein expression levels are elevated in H. pylori-positive versus H. pylori-negative human gastric biopsies. Similarly, chronic Helicobacter felis infection in wild-type mice augmented Aim2 gene expression levels compared with uninfected controls. Notably, gastric inflammation and hyperplasia were less severe in H. felis-infected Aim2-/- versus wild-type mice, evidenced by reductions in gastric immune cell infiltrates, mucosal thickness and proinflammatory cytokine and chemokine release. In addition, H. felis-driven proliferation and apoptosis in both gastric epithelial and immune cells were largely attenuated in Aim2-/- stomachs. These observations in Aim2-/- mouse stomachs correlated with decreased levels of inflammasome activity (caspase-1 cleavage) and the mature inflammasome effector cytokine, interleukin-1β. Taken together, this work uncovers a pathogenic role for the AIM2 inflammasome in Helicobacter-induced gastric disease, and furthers our understanding of the host immune response to a common pathogen and the complex and varying roles of AIM2 at different stages of cancerous and precancerous gastric disease.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Alison C West
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Ekimei Sun
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Georgie Wray‐McCann
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Beena Kumar
- Department of Anatomical PathologyMonash HealthClaytonVICAustralia
| | - Emiliana Rodriguez
- Pathology and Immunology DepartmentCMU/University of GenevaGenevaSwitzerland
| | - Cem Gabay
- Pathology and Immunology DepartmentCMU/University of GenevaGenevaSwitzerland
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
2
|
Tang K, McLeod L, Livis T, West AC, Dawson R, Yu L, Balic JJ, Chonwerawong M, Wray-McCann G, Oshima H, Oshima M, Deswaerte V, Ferrero RL, Jenkins BJ. Toll-like Receptor 9 Promotes Initiation of Gastric Tumorigenesis by Augmenting Inflammation and Cellular Proliferation. Cell Mol Gastroenterol Hepatol 2022; 14:567-586. [PMID: 35716851 PMCID: PMC9307956 DOI: 10.1016/j.jcmgh.2022.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection. METHODS TLR9 gene expression was profiled in gastric tissues from GC and gastritis patients and from the spontaneous gp130F/F GC mouse model and chronic H felis-infected wild-type (WT) mice. Gastric pathology was compared in gp130F/F and H felis infection models with or without genetic ablation of Tlr9. The impact of Tlr9 targeting on signaling cascades implicated in inflammation and tumorigenesis (eg, nuclear factor kappa B, extracellular signal-related kinase, and mitogen-activated protein kinase) was assessed in vivo. A direct growth-potentiating effect of TLR9 ligand stimulation on human GC cell lines and gp130F/F primary gastric epithelial cells was also evaluated. RESULTS TLR9 expression was up-regulated in Helicobacter-infected gastric tissues from GC and gastritis patients and gp130F/F and H felis-infected WT mice. Tlr9 ablation suppressed initiation of tumorigenesis in gp130F/F:Tlr9-/- mice by abrogating gastric inflammation and cellular proliferation. Tlr9-/- mice were also protected against H felis-induced gastric inflammation and hyperplasia. The suppressed gastric pathology upon Tlr9 ablation in both mouse models associated with attenuated nuclear factor kappa B and, to a lesser extent, extracellular signal-related kinase, mitogen-activated protein kinase signaling. TLR9 ligand stimulation of human GC cells and gp130F/F GECs augmented their proliferation and viability. CONCLUSIONS Our data reveal that TLR9 promotes the initiating stages of GC and facilitates Helicobacter-induced gastric inflammation and hyperplasia, thus providing in vivo evidence for TLR9 as a candidate therapeutic target in GC.
Collapse
Affiliation(s)
- Ke Tang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C. West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ruby Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Jesse J. Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Georgie Wray-McCann
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia,Correspondence Address correspondence to: Brendan J. Jenkins, PhD, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| |
Collapse
|
3
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
4
|
Xu Y, Deng Q, Zhong Y, Jing L, Li H, Li J, Yu H, Pan H, Guo S, Cao H, Huang P, Huang B. Clinical Strains of Helicobacter pylori With Strong Cell Invasiveness and the Protective Effect of Patchouli Alcohol by Improving miR-30b/C Mediated Xenophagy. Front Pharmacol 2021; 12:666903. [PMID: 33995095 PMCID: PMC8120110 DOI: 10.3389/fphar.2021.666903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori was classified by the World Health Organization as a class 1 carcinogen. The development of drug-resistant strains of this pathogen poses a serious threat to human health worldwide. The cell invasion of H. pylori activates xenophagy in gastric epithelial cells by mediating miR-30b/c, and the emergence of autophagosomes provides a niche that enables the survival of intracellular H. pylori and promotes its drug resistance. This study revealed that some clinical drug-resistant H. pylori strains present much stronger invasive ability than standard strains. Patchouli alcohol (PA), a tricyclic sesquiterpene from Pogostemon cablin (Blanco) Benth (Labiatae), showed reliable activity against intracellular H. pylori. The mechanisms appeared to involve the downregulation of miR-30c-3p/5p and miR-30b-5p, thereby upregulating xenophagy-related gene expression (ULK1, ATG5, ATG12, and ATG14) and enhancing xenophagy. PA also inhibited the nuclear transfection of miR-30b-5p induced by H. pylori, thereby enhancing transcription factor EB function and increasing lysosome activity. The finding of strongly invasive intracellular H. pylori has great implications for clinical treatment, and PA can act against invasive H. pylori based on the improvement of miR-30b/c mediated xenophagy. Taken together, the results demonstrate that PA have potential use as a candidate medication for intracellular drug-resistant H. pylori.
Collapse
Affiliation(s)
- Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhua Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanzun Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Jing
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Haiwen Li
- Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jingwei Li
- Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huimin Yu
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Balic JJ, Saad MI, Dawson R, West AJ, McLeod L, West AC, D'Costa K, Deswaerte V, Dev A, Sievert W, Gough DJ, Bhathal PS, Ferrero RL, Jenkins BJ. Constitutive STAT3 Serine Phosphorylation Promotes Helicobacter-Mediated Gastric Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1256-1270. [PMID: 32201262 DOI: 10.1016/j.ajpath.2020.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ruby Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alice J West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Anouk Dev
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, Victoria, Australia
| | - William Sievert
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, Victoria, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Prithi S Bhathal
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
D'Costa K, Chonwerawong M, Tran LS, Ferrero RL. Mouse Models Of Helicobacter Infection And Gastric Pathologies. J Vis Exp 2018. [PMID: 30394371 DOI: 10.3791/56985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that is present in half of the global population and is a significant cause of morbidity and mortality in humans. Several mouse models of gastric Helicobacter infection have been developed to study the molecular and cellular mechanisms whereby H. pylori bacteria colonize the stomach of human hosts and cause disease. Herein, we describe protocols to: 1) prepare bacterial suspensions for the in vivo infection of mice via intragastric gavage; 2) determine bacterial colonization levels in mouse gastric tissues, by polymerase chain reaction (PCR) and viable counting; and 3) assess pathological changes, by histology. To establish Helicobacter infection in mice, specific pathogen-free (SPF) animals are first inoculated with suspensions (containing ≥105 colony-forming units, CFUs) of mouse-colonizing strains of either Helicobacter pylori or other gastric Helicobacter spp. from animals, such as Helicobacter felis. At the appropriate time-points post-infection, stomachs are excised and dissected sagittally into two equal tissue fragments, each comprising the antrum and body regions. One of these fragments is then used for either viable counting or DNA extraction, while the other is subjected to histological processing. Bacterial colonization and histopathological changes in the stomach may be assessed routinely in gastric tissue sections stained with Warthin-Starry, Giemsa or Haematoxylin and Eosin (H&E) stains, as appropriate. Additional immunological analyses may also be undertaken by immunohistochemistry or immunofluorescence on mouse gastric tissue sections. The protocols described below are specifically designed to enable the assessment in mice of gastric pathologies resembling those in human-related H. pylori diseases, including inflammation, gland atrophy and lymphoid follicle formation. The inoculum preparation and intragastric gavage protocols may also be adapted to study the pathogenesis of other enteric human pathogens that colonize mice, such as Salmonella Typhimurium or Citrobacter rodentium.
Collapse
Affiliation(s)
- Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
| | - Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research; Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University;
| |
Collapse
|
7
|
Zhu YD, Hu L, Li P, Zhang M, Liu YQ. Effects of Celastrus orbiculatus on Epithelial Mesenchymal Transition in Gastric Mucosal Epithelial Cells by Inhibiting Lgr5 Expression from Rats with Gastric Precancerous Lesions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1129-1143. [PMID: 29976080 DOI: 10.1142/s0192415x18500593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extract of Celastrus orbiculatus (COE) has been shown to possess anti-Helicobacter pylori (H. pylori) activity and anticancer effects in vitro and in vivo. However, the molecular mechanism by which COE on precancerous lesions of gastric cancer (PLGC) has not been fully elucidated so far. The purpose of this study is to evaluate the effect and mechanism of COE in the rat model of PLGC, after the rat model of PLGC was successfully constructed. The effects of COE in gastric mucosa of rats with PLGC were tested using routine pathology and a transmission electron microscope (TEM) analysis. The protein and mRNA expression levels of epithelial mesenchymal transition (EMT) markers (E-cadherin, N-cadherin and Vimentin) and leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) were detected adopting techniques of immunohistochemistry (IHC), real-time PCR (RT-PCR) and western blot assays. The body weight of PLGC rats was significantly higher in the COE group than that in the untreated group. The process of PLGC was significantly reversed after COE treatment, shown by observing the changes of histopathological morphology and ultrastructure. Gastric mucosal epithelial cells in COE high dose (COE-H) group showed significantly higher expression levels of E-cadherin, and lower expression levels of N-cadherin, Vimentin and Lgr5 than those of the untreated group. COE could suppress the spatial distribution of Lgr5[Formula: see text] cell changes in PLGC rats. These findings suggested that the therapeutic mechanisms of COE in treating PLGC might be related with its effects on reversing the EMT process and inhibiting Lgr5 expression.
Collapse
Affiliation(s)
- Yao-Dong Zhu
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Lei Hu
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Ping Li
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Mei Zhang
- * Department of Chinese Integrative Medicine Oncology, First Affiliated Hospital of Medical University of Anhui, Hefei, Anhui, P. R. China
| | - Yan-Qing Liu
- † Chinese Medical Institution, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
8
|
Hill DG, Yu L, Gao H, Balic JJ, West A, Oshima H, McLeod L, Oshima M, Gallimore A, D'Costa K, Bhathal PS, Sievert W, Ferrero RL, Jenkins BJ, Jones GW. Hyperactive gp130/STAT3-driven gastric tumourigenesis promotes submucosal tertiary lymphoid structure development. Int J Cancer 2018; 143:167-178. [PMID: 29417587 PMCID: PMC5969244 DOI: 10.1002/ijc.31298] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/27/2023]
Abstract
Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F ) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis.
Collapse
Affiliation(s)
- David G. Hill
- Division of Infection and ImmunitySystems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffWalesUnited Kingdom
| | - Liang Yu
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Hugh Gao
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Jesse J. Balic
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Alison West
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Hiroko Oshima
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Louise McLeod
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
| | - Masanobu Oshima
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Awen Gallimore
- Division of Infection and ImmunitySystems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffWalesUnited Kingdom
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Prithi S. Bhathal
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - William Sievert
- Department of MedicineMonash Medical Centre, Monash UniversityClaytonVICAustralia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Biomedicine Discovery Institute, Department of MicrobiologyMonash UniversityClaytonVICAustralia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVICAustralia
| | - Gareth W. Jones
- Division of Infection and ImmunitySystems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffWalesUnited Kingdom
| |
Collapse
|
9
|
Tran LS, Tran D, De Paoli A, D'Costa K, Creed SJ, Ng GZ, Le L, Sutton P, Silke J, Nachbur U, Ferrero RL. NOD1 is required forHelicobacter pyloriinduction of IL-33 responses in gastric epithelial cells. Cell Microbiol 2018; 20:e12826. [DOI: 10.1111/cmi.12826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/24/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Darren Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Amanda De Paoli
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Sarah J. Creed
- Monash Micro Imaging, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Garrett Z. Ng
- Murdoch Children's Research Institute; The Royal Children's Hospital; Parkville Victoria Australia
- School of Veterinary and Agricultural Science; The University of Melbourne; Parkville Victoria Australia
| | - Lena Le
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
| | - Philip Sutton
- Murdoch Children's Research Institute; The Royal Children's Hospital; Parkville Victoria Australia
- School of Veterinary and Agricultural Science; The University of Melbourne; Parkville Victoria Australia
- Department of Paediatrics; The University of Melbourne; Parkville Victoria Australia
| | - J. Silke
- Division of Cell Signalling and Cell Death; The Walter and Eliza Hall Institute; Parkville Victoria Australia
- Department of Medical Biology; The University of Melbourne; Parkville Victoria Australia
| | - U. Nachbur
- Division of Cell Signalling and Cell Death; The Walter and Eliza Hall Institute; Parkville Victoria Australia
- Department of Medical Biology; The University of Melbourne; Parkville Victoria Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research; Monash University; Clayton Victoria Australia
- Biomedicine Discovery Institute, Department of Microbiology; Monash University; Clayton Victoria Australia
| |
Collapse
|
10
|
Xu YF, Lian DW, Chen YQ, Cai YF, Zheng YF, Fan PL, Ren WK, Fu LJ, Li YC, Xie JH, Cao HY, Tan B, Su ZR, Huang P. In Vitro and In Vivo Antibacterial Activities of Patchouli Alcohol, a Naturally Occurring Tricyclic Sesquiterpene, against Helicobacter pylori Infection. Antimicrob Agents Chemother 2017; 61:e00122-17. [PMID: 28320722 PMCID: PMC5444145 DOI: 10.1128/aac.00122-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/10/2017] [Indexed: 12/12/2022] Open
Abstract
This study further evaluated the in vitro and in vivo anti-Helicobacter pylori activities and potential underlying mechanism of patchouli alcohol (PA), a tricyclic sesquiterpene. In the in vitro assay, the capacities of PA to inhibit and kill H. pylori were tested on three standard strains at different pH values and on 12 clinical isolates. The effects of PA on H. pylori adhesion (and its alpA, alpB, and babA genes), motility (and its flaA and flaB genes), ultrastructure, and flagellation were investigated. Moreover, the H. pylori resistance to and postantibiotic effect (PAE) of PA were determined. Furthermore, the in vivo effects of PA on H. pylori eradication and gastritis were examined. Results showed that MICs of PA against three standard strains (pH 5.3 to 9) and 12 clinical isolates were 25 to 75 and 12.5 to 50 μg/ml, respectively. The killing kinetics of PA were time and concentration dependent, and its minimal bactericidal concentrations (MBCs) were 25 to 75 μg/ml. In addition, H. pylori adhesion, motility, ultrastructure, and flagellation were significantly suppressed. PA also remarkably inhibited the expression of adhesion genes (alpA and alpB) and motility genes (flaA and flaB). Furthermore, PA treatment caused a longer PAE and less bacterial resistance than clarithromycin and metronidazole. The in vivo study showed that PA can effectively eradicate H. pylori, inhibit gastritis, and suppress the expression of inflammatory mediators (COX-2, interleukin 1β, tumor necrosis factor alpha, and inducible nitric oxide synthase [iNOS]). In conclusion, PA can efficiently kill H. pylori, interfere with its infection process, and attenuate gastritis with less bacterial resistance, making it a potential candidate for new drug development.
Collapse
Affiliation(s)
- Y F Xu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - D W Lian
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y Q Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y F Cai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y F Zheng
- Department of Mammary Disease, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - P L Fan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - W K Ren
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - L J Fu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Y C Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - J H Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - H Y Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - B Tan
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Z R Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, People's Republic of China
| | - P Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|