1
|
Sayers C, Pandey V, Balakrishnan A, Michie K, Svedberg D, Hunziker M, Pardo M, Choudhary J, Berntsson R, Billker O. Systematic screens for fertility genes essential for malaria parasite transmission reveal conserved aspects of sex in a divergent eukaryote. Cell Syst 2024; 15:1075-1091.e6. [PMID: 39541984 DOI: 10.1016/j.cels.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Sexual reproduction in malaria parasites is essential for their transmission to mosquitoes and offers a divergent eukaryote model to understand the evolution of sex. Through a panel of genetic screens in Plasmodium berghei, we identify 348 sex and transmission-related genes and define roles for unstudied genes as putative targets for transmission-blocking interventions. The functional data provide a deeper understanding of female metabolic reprogramming, meiosis, and the axoneme. We identify a complex of a SUN domain protein (SUN1) and a putative allantoicase (ALLC1) that is essential for male fertility by linking the microtubule organizing center to the nuclear envelope and enabling mitotic spindle formation during male gametogenesis. Both proteins have orthologs in mouse testis, and the data raise the possibility of an ancient role for atypical SUN domain proteins in coupling the nucleus and axoneme. Altogether, our data provide an unbiased picture of the molecular processes that underpin malaria parasite transmission. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Claire Sayers
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Katharine Michie
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mercedes Pardo
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Jyoti Choudhary
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Segireddy RR, Belda H, Yang ASP, Dundas K, Knoeckel J, Galaway F, Wood L, Quinkert D, Knuepfer E, Treeck M, Wright GJ, Douglas AD. A screen for Plasmodium falciparum sporozoite surface protein binding to human hepatocyte surface receptors identifies novel host-pathogen interactions. Malar J 2024; 23:151. [PMID: 38755636 PMCID: PMC11098746 DOI: 10.1186/s12936-024-04913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.
Collapse
Affiliation(s)
- Rameswara R Segireddy
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Annie S P Yang
- Research Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Kirsten Dundas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Julia Knoeckel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Francis Galaway
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Laura Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Ellen Knuepfer
- The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Gavin J Wright
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Alexander D Douglas
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
3
|
Thiele PJ, Mela-Lopez R, Blandin SA, Klug D. Let it glow: genetically encoded fluorescent reporters in Plasmodium. Malar J 2024; 23:114. [PMID: 38643106 PMCID: PMC11032601 DOI: 10.1186/s12936-024-04936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.
Collapse
Affiliation(s)
- Pia J Thiele
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Raquel Mela-Lopez
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Stéphanie A Blandin
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France
| | - Dennis Klug
- Inserm, CNRS, Université de Strasbourg, UPR9022/U1257, Mosquito Immune Responses (MIR), IBMC, F-67000, Strasbourg, France.
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
4
|
Hussien MI, Soliman BA, Tewfick MK, O’Brochta DA. An ex vivo system for investigation of Plasmodium berghei invasion of the salivary gland of Anopheles stephensi mosquitoes. Pathog Glob Health 2023; 117:308-314. [PMID: 35993325 PMCID: PMC10081056 DOI: 10.1080/20477724.2022.2108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Plasmodium sporozoites associated with the midgut and in the hemolymph of mosquitoes differ from sporozoites in the secretory cavities and ducts of the insects' salivary glands in their transcriptome, proteome, motility, and infectivity. Using an ex vivo Anopheles stephensi salivary gland culture system incorporating simple microfluidics and transgenic Plasmodium berghei with the fluorescent protein gene mCherry under the transcriptional control of the Pbuis4 promoter whose expression served as a proxy for parasite maturation, we observed rapid parasite maturation in the absence of salivary gland invasion. While in vivo Pbuis4::mCherry expression was only detectable in sporozoites within the salivary glands (mature parasites) as expected, the simple exposure of P. berghei sporozoites to dissected salivary glands led to rapid parasite maturation as indicated by mCherry expression. These results suggest that previous efforts to develop ex vivo and in vitro systems for investigating sporozoite interactions with mosquito salivary glands have likely been unsuccessful in part because the maturation of sporozoites leads to a loss in the ability to invade salivary glands.
Collapse
Affiliation(s)
- Mai I. Hussien
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland-College Park, Rockville, MD, USA
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Belal A. Soliman
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Maha K. Tewfick
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - David A. O’Brochta
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland-College Park, Rockville, MD, USA
| |
Collapse
|
5
|
Niu G, Cui Y, Wang X, Keleta Y, Li J. Studies of the Parasite-Midgut Interaction Reveal Plasmodium Proteins Important for Malaria Transmission to Mosquitoes. Front Cell Infect Microbiol 2021; 11:654216. [PMID: 34262880 PMCID: PMC8274421 DOI: 10.3389/fcimb.2021.654216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria transmission relies on parasite-mosquito midgut interaction. The interactive proteins are hypothesized to be ideal targets to block malaria transmission to mosquitoes. We chose 76 genes that contain signal peptide-coding regions and are upregulated and highly abundant at sexual stages. Forty-six of these candidate genes (60%) were cloned and expressed using the baculovirus expression system in insect cells. Six of them, e.g., PF3D7_0303900, PF3D7_0406200 (Pfs16), PF3D7_1204400 (Pfs37), PF3D7_1214800, PF3D7_1239400, and PF3D7_1472800 were discovered to interact with blood-fed mosquito midgut lysate. Previous works showed that among these interactive proteins, knockout the orthologs of Pfs37 or Pfs16 in P. berghei reduced oocysts in mosquitoes. Here we further found that anti-Pfs16 polyclonal antibody significantly inhibited P. falciparum transmission to Anopheles gambiae. Investigating these candidate proteins will improve our understanding of malaria transmission and discover new targets to break malaria transmission.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
6
|
Vu H, Pedro L, Mak T, McCormick B, Rowley J, Liu M, Di Capua A, Williams-Noonan B, Pham NB, Pouwer R, Nguyen B, Andrews KT, Skinner-Adams T, Kim J, Hol WGJ, Hui R, Crowther GJ, Van Voorhis WC, Quinn RJ. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infect Dis 2018; 4:431-444. [PMID: 29436819 PMCID: PMC5902791 DOI: 10.1021/acsinfecdis.7b00197] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Natural
products are well known for their biological relevance, high degree
of three-dimensionality, and access to areas of largely unexplored
chemical space. To shape our understanding of the interaction between
natural products and protein targets in the postgenomic era, we have
used native mass spectrometry to investigate 62 potential protein
targets for malaria using a natural-product-based fragment library.
We reveal here 96 low-molecular-weight natural products identified
as binding partners of 32 of the putative malarial targets. Seventy-nine
(79) fragments have direct growth inhibition on Plasmodium
falciparum at concentrations that are promising for the development
of fragment hits against these protein targets. This adds a fragment
library to the published HTS active libraries in the public domain.
Collapse
Affiliation(s)
- Hoan Vu
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Liliana Pedro
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Brendan McCormick
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Jessica Rowley
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Angela Di Capua
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Billy Williams-Noonan
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Ngoc B. Pham
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Rebecca Pouwer
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Bao Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | | | | | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, seventh floor 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | | | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia
| |
Collapse
|
7
|
Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, Billker O, Berriman M, Lawniczak MK. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife 2018; 7:33105. [PMID: 29580379 PMCID: PMC5871331 DOI: 10.7554/elife.33105] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/04/2018] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing is revolutionising our understanding of seemingly homogeneous cell populations but has not yet been widely applied to single-celled organisms. Transcriptional variation in unicellular malaria parasites from the Plasmodium genus is associated with critical phenotypes including red blood cell invasion and immune evasion, yet transcriptional variation at an individual parasite level has not been examined in depth. Here, we describe the adaptation of a single-cell RNA-sequencing (scRNA-seq) protocol to deconvolute transcriptional variation for more than 500 individual parasites of both rodent and human malaria comprising asexual and sexual life-cycle stages. We uncover previously hidden discrete transcriptional signatures during the pathogenic part of the life cycle, suggesting that expression over development is not as continuous as commonly thought. In transmission stages, we find novel, sex-specific roles for differential expression of contingency gene families that are usually associated with immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Adam J Reid
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Arthur M Talman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Hayley M Bennett
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Ana R Gomes
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mandy J Sanders
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Oliver Billker
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Matthew Berriman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mara Kn Lawniczak
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
8
|
Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, Metcalf T, Modrzynska K, Schwach F, Martin RE, Mather MW, McFadden GI, Parts L, Rutledge GG, Vaidya AB, Wengelnik K, Rayner JC, Billker O. Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 2017; 170:260-272.e8. [PMID: 28708996 PMCID: PMC5509546 DOI: 10.1016/j.cell.2017.06.030] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/13/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
The genomes of malaria parasites contain many genes of unknown function. To assist drug development through the identification of essential genes and pathways, we have measured competitive growth rates in mice of 2,578 barcoded Plasmodium berghei knockout mutants, representing >50% of the genome, and created a phenotype database. At a single stage of its complex life cycle, P. berghei requires two-thirds of genes for optimal growth, the highest proportion reported from any organism and a probable consequence of functional optimization necessitated by genomic reductions during the evolution of parasitism. In contrast, extreme functional redundancy has evolved among expanded gene families operating at the parasite-host interface. The level of genetic redundancy in a single-celled organism may thus reflect the degree of environmental variation it experiences. In the case of Plasmodium parasites, this helps rationalize both the relative successes of drugs and the greater difficulty of making an effective vaccine. Two-thirds of Plasmodium berghei genes contribute to normal blood stage growth The core genome of malaria parasites is highly optimized for rapid host colonization Essential parasite genes and pathways are identified for drug target prioritization Low functional redundancy reflects the constant environment encountered by a parasite
Collapse
Affiliation(s)
- Ellen Bushell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Ana Rita Gomes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Theo Sanderson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Burcu Anar
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gareth Girling
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Colin Herd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Tom Metcalf
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Katarzyna Modrzynska
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Frank Schwach
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Australia
| | - Leopold Parts
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gavin G Rutledge
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Akhil B Vaidya
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kai Wengelnik
- DIMNP, CNRS, INSERM, University Montpellier, Montpellier, France
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
9
|
Abstract
Two decades after the first Plasmodium transfection, attempts have been made to disrupt more than 3,151 genes in malaria parasites, across five Plasmodium species. While results from rodent malaria transfections have been curated and systematised, empowering large-scale analysis, phenotypic data from human malaria parasite transfections currently exists as individual reports scattered across a the literature. To facilitate systematic analysis of published experimental genetic data across Plasmodium species, we have built PhenoPlasm ( http://www.phenoplasm.org), a database of phenotypes generated by transfection experiments in all Plasmodium parasites. The site provides a simple interface linking citation-backed Plasmodium reverse-genetic phenotypes to gene IDs. The database has been populated with phenotypic data on 367 P. falciparum genes, curated from 176 individual publications, as well as existing data on rodent Plasmodium species from RMgmDB and PlasmoGEM. This is the first time that all available data on P. falciparum transfection experiments has been brought together in a single place. These data are presented using ortholog mapping to allow a researcher interested in a gene in one species to see results across other Plasmodium species. The collaborative nature of the database enables any researcher to add new phenotypes as they are discovered. As an example of database utility, we use the currently available datasets to identify RAP (RNA-binding domain abundant in Apicomplexa)-domain containing proteins as crucial to parasite survival.
Collapse
Affiliation(s)
- Theo Sanderson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
10
|
Sanderson T, Rayner JC. PhenoPlasm: a database of disruption phenotypes for malaria parasite genes. Wellcome Open Res 2017; 2:45. [PMID: 28748223 PMCID: PMC5500895 DOI: 10.12688/wellcomeopenres.11896.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Two decades after the first Plasmodium transfection, attempts have been made to disrupt more than 3,151 genes in malaria parasites, across five Plasmodium species. While results from rodent malaria transfections have been curated and systematised, empowering large-scale analysis, phenotypic data from human malaria parasite transfections currently exists as individual reports scattered across a the literature. To facilitate systematic analysis of published experimental genetic data across Plasmodium species, we have built PhenoPlasm ( http://www.phenoplasm.org), a database of phenotypes generated by transfection experiments in all Plasmodium parasites. The site provides a simple interface linking citation-backed Plasmodium reverse-genetic phenotypes to gene IDs. The database has been populated with phenotypic data on 367 P. falciparum genes, curated from 176 individual publications, as well as existing data on rodent Plasmodium species from RMgmDB and PlasmoGEM. This is the first time that all available data on P. falciparum transfection experiments has been brought together in a single place. These data are presented using ortholog mapping to allow a researcher interested in a gene in one species to see results across other Plasmodium species. The collaborative nature of the database enables any researcher to add new phenotypes as they are discovered. As an example of database utility, we use the currently available datasets to identify RAP (RNA-binding domain abundant in Apicomplexa)-domain containing proteins as crucial to parasite survival.
Collapse
Affiliation(s)
- Theo Sanderson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
11
|
Salman AM, Montoya-Díaz E, West H, Lall A, Atcheson E, Lopez-Camacho C, Ramesar J, Bauza K, Collins KA, Brod F, Reis F, Pappas L, González-Cerón L, Janse CJ, Hill AVS, Khan SM, Reyes-Sandoval A. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models. Sci Rep 2017; 7:46482. [PMID: 28417968 PMCID: PMC5394459 DOI: 10.1038/srep46482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
Development of a protective and broadly-acting vaccine against the most widely distributed human malaria parasite, Plasmodium vivax, will be a major step towards malaria elimination. However, a P. vivax vaccine has remained elusive by the scarcity of pre-clinical models to test protective efficacy and support further clinical trials. In this study, we report the development of a highly protective CSP-based P. vivax vaccine, a virus-like particle (VLP) known as Rv21, able to provide 100% sterile protection against a stringent sporozoite challenge in rodent models to malaria, where IgG2a antibodies were associated with protection in absence of detectable PvCSP-specific T cell responses. Additionally, we generated two novel transgenic rodent P. berghei parasite lines, where the P. berghei csp gene coding sequence has been replaced with either full-length P. vivax VK210 or the allelic VK247 csp that additionally express GFP-Luciferase. Efficacy of Rv21 surpassed viral-vectored vaccination using ChAd63 and MVA. We show for the first time that a chimeric VK210/247 antigen can elicit high level cross-protection against parasites expressing either CSP allele, which provide accessible and affordable models suitable to support the development of P. vivax vaccines candidates. Rv21 is progressing to GMP production and has entered a path towards clinical evaluation.
Collapse
Affiliation(s)
- Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Eduardo Montoya-Díaz
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Heather West
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Amar Lall
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Erwan Atcheson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Cesar Lopez-Camacho
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Karolis Bauza
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katharine A Collins
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Florian Brod
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Fernando Reis
- Universidade Federal de Minas Gerais, Belo Horizonte - MG - Brasil
| | - Leontios Pappas
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, 4ta Avenida Norte y Calle 19 Poniente, Tapachula, Chiapas, CP 30740, Mexico
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
12
|
Kehrer J, Frischknecht F, Mair GR. Proteomic Analysis of the Plasmodium berghei Gametocyte Egressome and Vesicular bioID of Osmiophilic Body Proteins Identifies Merozoite TRAP-like Protein (MTRAP) as an Essential Factor for Parasite Transmission. Mol Cell Proteomics 2016; 15:2852-62. [PMID: 27371728 PMCID: PMC5013303 DOI: 10.1074/mcp.m116.058263] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
Malaria transmission from an infected host to the mosquito vector requires the uptake of intraerythrocytic sexual precursor cells into the mosquito midgut. For the release of mature extracellular gametes two membrane barriers-the parasite parasitophorous vacuole membrane and the host red blood cell membrane-need to be dissolved. Membrane lysis occurs after the release of proteins from specialized secretory vesicles including osmiophilic bodies. In this study we conducted proteomic analyses of the P. berghei gametocyte egressome and developed a vesicular bioID approach to identify hitherto unknown proteins with a potential function in gametocyte egress. This first Plasmodium gametocyte egressome includes the proteins released by the parasite during the lysis of the parasitophorous vacuole membrane and red blood cell membrane. BioID of the osmiophilic body protein MDV1/PEG3 revealed a vesicular proteome of these gametocyte-specific secretory vesicles. Fluorescent protein tagging and gene deletion approaches were employed to validate and identify a set of novel factors essential for this lysis and egress process. Our study provides the first in vivo bioID for a rodent malaria parasite and together with the first Plasmodium gametocyte egressome identifies MTRAP as a novel factor essential for mosquito transmission. Our data provide an important resource for proteins potentially involved in a key step of gametogenesis.
Collapse
Affiliation(s)
- Jessica Kehrer
- From the ‡Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- From the ‡Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gunnar R Mair
- From the ‡Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Manzoni G, Briquet S, Risco-Castillo V, Gaultier C, Topçu S, Ivănescu ML, Franetich JF, Hoareau-Coudert B, Mazier D, Silvie O. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites. Sci Rep 2014; 4:4760. [PMID: 24755823 PMCID: PMC3996467 DOI: 10.1038/srep04760] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development.
Collapse
Affiliation(s)
- Giulia Manzoni
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4]
| | - Sylvie Briquet
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4]
| | - Veronica Risco-Castillo
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Charlotte Gaultier
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4]
| | - Selma Topçu
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Maria Larisa Ivănescu
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Jean-François Franetich
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| | - Bénédicte Hoareau-Coudert
- Sorbonne Universités, UPMC Univ Paris 06, Plateforme de Cytométrie en Flux CyPS, site Pitié-Salpêtrière, Paris, France
| | - Dominique Mazier
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France [4] Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Parasitologie-Mycologie, Paris, France
| | - Olivier Silvie
- 1] Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France [2] INSERM, U1135, CIMI-Paris, 75013, Paris, France [3] CNRS, ERL 8255, CIMI-Paris, 75013, Paris, France
| |
Collapse
|
14
|
In vivo imaging in NHP models of malaria: challenges, progress and outlooks. Parasitol Int 2013; 63:206-15. [PMID: 24042056 PMCID: PMC7108422 DOI: 10.1016/j.parint.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Animal models of malaria, mainly mice, have made a large contribution to our knowledge of host-pathogen interactions and immune responses, and to drug and vaccine design. Non-human primate (NHP) models for malaria are admittedly under-used, although they are probably closer models than mice for human malaria; in particular, NHP models allow the use of human pathogens (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium knowlesi). NHPs, whether natural hosts or experimentally challenged with a simian Plasmodium, can also serve as robust pre-clinical models. Some simian parasites are closely related to a human counterpart, with which they may share a common ancestor, and display similar major features with the human infection and pathology. NHP models allow longitudinal studies, from the early events following sporozoite inoculation to the later events, including analysis of organs and tissues, particularly liver, spleen, brain and bone marrow. NHP models have one other significant advantage over mouse models: NHPs are our closest relatives and thus their biology is very similar to ours. Recently developed in vivo imaging tools have provided insight into malaria parasite infection and disease in mouse models. One advantage of these tools is that they limit the need for invasive procedures, such as tissue biopsies. Many such technologies are now available for NHP studies and provide new opportunities for elucidating host/parasite interactions. The aim of this review is to bring the malaria community up to date on what is currently possible and what soon will be, in terms of in vivo imaging in NHP models of malaria, to consider the pros and the cons of the various techniques, and to identify challenges.
Collapse
|