1
|
Serreze DV, Dwyer JR, Racine JJ. Advancing Animal Models of Human Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041587. [PMID: 38886067 PMCID: PMC11444302 DOI: 10.1101/cshperspect.a041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.
Collapse
|
2
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
3
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
4
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
NaPier Z, Kanim LEA, Nelson TJ, Salehi K, Arabi Y, Glaeser JD, Sheyn D, Metzger MF. The effect of insulin dependent diabetes on bone metabolism and growth after spinal fusion. Spine J 2020; 20:800-808. [PMID: 31759133 PMCID: PMC7234904 DOI: 10.1016/j.spinee.2019.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Experimental animal model. OBJECTIVE The purpose of this study was to evaluate the hypothesis that insulin dependent diabetes mellitus (IDDM) will inhibit the formation of a solid bony union after spinal fusion surgery via an alteration of the microenvironment at the fusion site in a rat model. SUMMARY OF BACKGROUND DATA Previous studies report diabetes mellitus (DM) and specifically IDDM as a risk factor for complications and poor surgical outcomes following spinal fusion. METHODS Twenty control and 22 diabetic rats were obtained at 5 weeks of age. At 20 weeks of age, all animals underwent posterolateral lumbar fusion surgery using a tailbone autograft with diabetic rats receiving an implantable time release insulin pellet. A subset of rats was sacrificed 1-week postsurgery for growth factor (PDGF, IGF-I, TGF-β, and VEGF) and proinflammatory cytokine ELISA analysis. All other rats were sacrificed 3-months postsurgery for fusion evaluation via manual palpation and micro CT. Glycated hemoglobin (HbA1c) was measured at surgery and sacrifice on all animals. RESULTS Compared with healthy rats undergoing spinal fusion, rats with IDDM demonstrated a significant reduction in manual palpation fusion rates (16.7% vs. 43%, p<.05). Average bone mineral density, bone volume, and bone volume fraction were also significantly reduced and negatively correlated to blood glucose levels. IL-1B, IL-5, IL-10, TNF-α, and KC/GRO were significantly elevated in fusion beds of IDDM rats. CONCLUSIONS This study demonstrates that rats with IDDM demonstrate a reduced rate and quality of spinal fusion with increased local levels of inflammatory cytokines. Targeted modalities are required to improve bone healing in this growing, high-risk population. CLINICAL SIGNIFICANCE This is the first translational animal model of IDDM to evaluate the rate and quality of spinal fusion while controlling for other surgical and patient-related risk factors. Our findings demonstrate the complex nature by which IDDM impairs bone healing and highlight the need for additional basic science research to further elucidate this mechanism in order to develop more effective therapeutic interventions.
Collapse
Affiliation(s)
- Zachary NaPier
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA
| | - Linda E A Kanim
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building 6006, Los Angeles, CA 90048, USA
| | - Trevor J Nelson
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Cedars-Sinai Orthopedic Biomechanics Laboratory, Los Angeles, CA, USA
| | - Khosrowdad Salehi
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building 6006, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasaman Arabi
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building 6006, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Juliane D Glaeser
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building 6006, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dmitriy Sheyn
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Orthopedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building 6006, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Surgery, Cedars-Sinai, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai, Los Angeles, CA, USA; Cedars-Sinai Orthopedic Biomechanics Laboratory, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Nakayama M, Michels AW. Determining Antigen Specificity of Human Islet Infiltrating T Cells in Type 1 Diabetes. Front Immunol 2019; 10:365. [PMID: 30906293 PMCID: PMC6418007 DOI: 10.3389/fimmu.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes, the immune mediated form of diabetes, represents a prototypical organ specific autoimmune disease in that insulin producing pancreatic islets are specifically targeted by T cells. The disease is now predictable in humans with the measurement of type 1 diabetes associated autoantibodies (islet autoantibodies) in the peripheral blood which are directed against insulin and beta cell proteins. With an increasing incidence of disease, especially in young children, large well-controlled clinical prevention trials using antigen specific immunotherapy have been completed but with limited clinical benefit. To improve outcomes, it is critical to understand the antigen and T cell receptor repertoires of those cells that infiltrate the target organ, pancreatic islets, in human type 1 diabetes. With international networks to identify organ donors with type 1 diabetes, improved immunosequencing platforms, and the ability to reconstitute T cell receptors of interest into immortalized cell lines allows antigen discovery efforts for rare tissue specific T cells. Here we review the disease pathogenesis of type 1 diabetes with a focus on human islet infiltrating T cell antigen discovery efforts, which provides necessary knowledge to define biomarkers of disease activity and improve antigen specific immunotherapy approaches for disease prevention.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
7
|
Dimakopoulou A, Jayasena CN, Radia UK, Algefari M, Minhas S, Oliver N, Dhillo WS. Animal Models of Diabetes-Related Male Hypogonadism. Front Endocrinol (Lausanne) 2019; 10:628. [PMID: 31620084 PMCID: PMC6759521 DOI: 10.3389/fendo.2019.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Anastasia Dimakopoulou
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Andrology, Hammersmith Hospital, London, United Kingdom
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Andrology, Hammersmith Hospital, London, United Kingdom
- *Correspondence: Channa N. Jayasena
| | - Utsav K. Radia
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Metab Algefari
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Suks Minhas
- Department of Andrology, Hammersmith Hospital, London, United Kingdom
| | - Nick Oliver
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Diabetes and Endocrinology, St. Mary's Hospital, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Waljit S. Dhillo
| |
Collapse
|
8
|
Pearson JA, Agriantonis A, Wong FS, Wen L. Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Hum Vaccin Immunother 2018; 14:2580-2596. [PMID: 30156993 PMCID: PMC6314421 DOI: 10.1080/21645515.2018.1514354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023] Open
Abstract
T1D is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing β-cells in the pancreatic islets of Langerhans, resulting in hyperglycemia, with patients requiring lifelong insulin treatment. Many studies have shown that genetics alone are not sufficient for the increase in T1D incidence and thus other factors have been suggested to modify the disease risk. T1D incidence has sharply increased in the developed world, especially amongst youth. In Europe, T1D incidence is increasing at an annual rate of 3-4%. Increasing evidence shows that gut microbiota, as one of the environmental factors influencing diabetes development, play an important role in development of T1D. Here, we summarize the current knowledge about the relationship between the microbiota and T1D. We also discuss the possibility of T1D prevention by changing the composition of gut microbiota.
Collapse
Affiliation(s)
- James A. Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - Andrew Agriantonis
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Lombardi A, Tsomos E, Hammerstad SS, Tomer Y. Interferon alpha: The key trigger of type 1 diabetes. J Autoimmun 2018; 94:7-15. [PMID: 30115527 DOI: 10.1016/j.jaut.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
IFNα is a cytokine essential to a vast array of immunologic processes. Its induction early in the innate immune response provides a priming mechanism that orchestrates numerous subsequent pathways in innate and adaptive immunity. Despite its beneficial effects in viral infections IFNα has been reported to be associated with several autoimmune diseases including autoimmune thyroid disease, systemic lupus erythematosus, rheumatoid arthritis, primary biliary cholangitis, and recently emerged as a major cytokine that triggers Type 1 Diabetes. In this review, we dissect the role of IFNα in T1D, focusing on the potential pathophysiological mechanisms involved. Evidence from human and mouse studies indicates that IFNα plays a key role in enhancing islet expression of HLA-I in patients with T1D, thereby increasing autoantigen presentation and beta cell activation of autoreactive cytotoxic CD8 T-lymphocytes. The binding of IFNα to its receptor induces the secretion of chemokines, attracting monocytes, T lymphocytes, and NK cells to the infected tissue triggering autoimmunity in susceptible individuals. Furthermore, IFNα impairs insulin production through the induction of endoplasmic reticulum stress as well as by impairing mitochondrial function. Due to its central role in the early phases of beta cell death, targeting IFNα and its pathways in genetically predisposed individuals may represent a potential novel therapeutic strategy in the very early stages of T1D.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Effie Tsomos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara S Hammerstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, Oslo, Norway; Department of Pediatrics, Oslo University Hospital, Ulleval, Oslo, Norway
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9:432. [PMID: 29593681 PMCID: PMC5857604 DOI: 10.3389/fmicb.2018.00432] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.
Collapse
Affiliation(s)
- Maria C Opazo
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Elizabeth M Ortega-Rocha
- Laboratorio de Inmunobiología, Facultad de Medicina, Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Irenice Coronado-Arrázola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Helene Boudin
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad, Metropolitana, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". Curr Diab Rep 2017; 17:95. [PMID: 28864875 PMCID: PMC5600889 DOI: 10.1007/s11892-017-0915-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. RECENT FINDINGS Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.
Collapse
Affiliation(s)
- Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
12
|
Roberts FR, Hupple C, Norowski E, Walsh NC, Przewozniak N, Aryee KE, Van Dessel FM, Jurczyk A, Harlan DM, Greiner DL, Bortell R, Yang C. Possible type 1 diabetes risk prediction: Using ultrasound imaging to assess pancreas inflammation in the inducible autoimmune diabetes BBDR model. PLoS One 2017; 12:e0178641. [PMID: 28605395 PMCID: PMC5468055 DOI: 10.1371/journal.pone.0178641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022] Open
Abstract
Background/Aims Studies of human cadaveric pancreas specimens indicate that pancreas inflammation plays an important role in type 1 diabetes pathogenesis. Due to the inaccessibility of pancreas in living patients, imaging technology to visualize pancreas inflammation is much in need. In this study, we investigated the feasibility of utilizing ultrasound imaging to assess pancreas inflammation longitudinally in living rats during the progression leading to type 1 diabetes onset. Methods The virus-inducible BBDR type 1 diabetes rat model was used to systematically investigate pancreas changes that occur prior to and during development of autoimmunity. The nearly 100% diabetes incidence upon virus induction and the highly consistent time course of this rat model make longitudinal imaging examination possible. A combination of histology, immunoblotting, flow cytometry, and ultrasound imaging technology was used to identify stage-specific pancreas changes. Results Our histology data indicated that exocrine pancreas tissue of the diabetes-induced rats underwent dramatic changes, including blood vessel dilation and increased CD8+ cell infiltration, at a very early stage of disease initiation. Ultrasound imaging data revealed significant acute and persistent pancreas inflammation in the diabetes-induced rats. The pancreas micro-vasculature was significantly dilated one day after diabetes induction, and large blood vessel (superior mesenteric artery in this study) dilation and inflammation occurred several days later, but still prior to any observable autoimmune cell infiltration of the pancreatic islets. Conclusions Our data demonstrate that ultrasound imaging technology can detect pancreas inflammation in living rats during the development of type 1 diabetes. Due to ultrasound’s established use as a non-invasive diagnostic tool, it may prove useful in a clinical setting for type 1 diabetes risk prediction prior to autoimmunity and to assess the effectiveness of potential therapeutics.
Collapse
Affiliation(s)
| | | | - Elaine Norowski
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicole C. Walsh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Natalia Przewozniak
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ken-Edwin Aryee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Filia M. Van Dessel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David M. Harlan
- Department of Medicine, University of Massachusetts Medical School, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chaoxing Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This report examines recent publications identifying phenotypic and functional heterogeneity among pancreatic β cells and investigating their potential roles in normal and abnormal islet function. The development of new methods and tools for the study of individual islet cells has produced a surge of interest in this topic. RECENT FINDINGS Studies of β cell maturation and pregnancy-induced proliferation have identified changes in serotonin and transcription factors SIX2/3 expression as markers of temporal heterogeneity. Structural and functional heterogeneity in the form of functionally distinct 'hub' and 'follower' β cells was found in mouse islets. Heterogeneous expression of Fltp (in mouse β cells) and ST8SIA1 and CD9 (in human β cells) were associated with distinct functional potential. Several impressive reports describing the transcriptomes of individual β cells were also published in recent months. Some of these reveal previously unknown β cell subpopulations. SUMMARY A wealth of information on functional and phenotypic heterogeneity has been collected recently, including the transcriptomes of individual β cells and the identities of functionally distinct β cell subpopulations. Several studies suggest the existence of two broad categories: a more proliferative but less functional and a less proliferative but more functional β cell type. The identification of functionally distinct subpopulations and their association with type 2 diabetes underlines the potential clinical importance of these investigations.
Collapse
Affiliation(s)
- Chaoxing Yang
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
14
|
Derr A, Yang C, Zilionis R, Sergushichev A, Blodgett DM, Redick S, Bortell R, Luban J, Harlan DM, Kadener S, Greiner DL, Klein A, Artyomov MN, Garber M. End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data. Genome Res 2016; 26:1397-1410. [PMID: 27470110 PMCID: PMC5052061 DOI: 10.1101/gr.207902.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Abstract
RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3′-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.
Collapse
Affiliation(s)
- Alan Derr
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Chaoxing Yang
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Rapolas Zilionis
- Department of System Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; Institute of Biotechnology, Vilnius University, LT 02241 Vilnius, Lithuania
| | - Alexey Sergushichev
- Computer Technologies Department, ITMO University, Saint Petersburg, 197101, Russia; Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - David M Blodgett
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Sambra Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Rita Bortell
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - David M Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allon Klein
- Department of System Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
15
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
16
|
Yang C, Jurczyk A, diIorio P, Norowski E, Brehm MA, Grant CW, Guberski DL, Greiner DL, Bortell R. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat. PLoS One 2013; 8:e78050. [PMID: 24147110 PMCID: PMC3797740 DOI: 10.1371/journal.pone.0078050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Abstract
Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.
Collapse
Affiliation(s)
- Chaoxing Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Philip diIorio
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Elaine Norowski
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael A. Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christian W. Grant
- Biomedical Research Models, Worcester, Massachusetts, United States of America
| | - Dennis L. Guberski
- Biomedical Research Models, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- *E-mail:
| |
Collapse
|
17
|
Karimian N, Qin T, Liang T, Osundiji M, Huang Y, Teich T, Riddell MC, Cattral MS, Coy DH, Vranic M, Gaisano HY. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 2013; 62:2968-77. [PMID: 23630299 PMCID: PMC3717832 DOI: 10.2337/db13-0164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Impaired counterregulation during hypoglycemia in type 1 diabetes (T1D) is partly attributable to inadequate glucagon secretion. Intra-islet somatostatin (SST) suppression of hypoglycemia-stimulated α-cell glucagon release plays an important role. We hypothesized that hypoglycemia can be prevented in autoimmune T1D by SST receptor type 2 (SSTR2) antagonism of α-cells, which relieve SSTR2 inhibition, thereby increasing glucagon secretion. Diabetic biobreeding diabetes-prone (BBDP) rats mimic insulin-dependent human autoimmune T1D, whereas nondiabetic BBDP rats mimic prediabetes. Diabetic and nondiabetic rats underwent a 3-h infusion of vehicle compared with SSTR2 antagonist (SSTR2a) during insulin-induced hypoglycemia clamped at 3 ± 0.5 mmol/L. Diabetic rats treated with SSTR2a needed little or no glucose infusion compared with untreated rats. We attribute this effect to SSTR2a restoration of the attenuated glucagon response. Direct effects of SSTR2a on α-cells was assessed by resecting the pancreas, which was cut into fine slices and subjected to perifusion to monitor glucagon release. SSTR2a treatment enhanced low-glucose-stimulated glucagon and corticosterone secretion to normal levels in diabetic rats. SSTR2a had similar effects in vivo in nondiabetic rats and promoted glucagon secretion from nondiabetic rat and human pancreas slices. We conclude that SST contributes to impaired glucagon responsiveness to hypoglycemia in autoimmune T1D. SSTR2a treatment can fully restore hypoglycemia-stimulated glucagon release sufficient to attain normoglycemia in both diabetic and prediabetic stages.
Collapse
Affiliation(s)
- Negar Karimian
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mayowa Osundiji
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yachi Huang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Trevor Teich
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Mark S. Cattral
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David H. Coy
- Department of Medicine, Peptide Research Laboratories, Tulane University, New Orleans, Louisiana
| | - Mladen Vranic
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Herbert Y. Gaisano, , or Mladen Vranic,
| | - Herbert Y. Gaisano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Herbert Y. Gaisano, , or Mladen Vranic,
| |
Collapse
|
18
|
Novikova L, Smirnova IV, Rawal S, Dotson AL, Benedict SH, Stehno-Bittel L. Variations in rodent models of type 1 diabetes: islet morphology. J Diabetes Res 2013; 2013:965832. [PMID: 23762878 PMCID: PMC3671304 DOI: 10.1155/2013/965832] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by hyperglycemia due to lost or damaged islet insulin-producing β -cells. Rodent models of T1D result in hyperglycemia, but with different forms of islet deterioration. This study focused on 1 toxin-induced and 2 autoimmune rodent models of T1D: BioBreeding Diabetes Resistant rats, nonobese diabetic mice, and Dark Agouti rats treated with streptozotocin. Immunochemistry was used to evaluate the insulin levels in the β -cells, cell composition, and insulitis. T1D caused complete or significant loss of β -cells in all animal models, while increasing numbers of α -cells. Lymphocytic infiltration was noted in and around islets early in the progression of autoimmune diabetes. The loss of lymphocytic infiltration coincided with the absence of β -cells. In all models, the remaining α - and δ -cells regrouped by relocating to the islet center. The resulting islets were smaller in size and irregularly shaped. Insulin injections subsequent to induction of toxin-induced diabetes significantly preserved β -cells and islet morphology. Diabetes in animal models is anatomically heterogeneous and involves important changes in numbers and location of the remaining α - and δ -cells. Comparisons with human pancreatic sections from healthy and diabetic donors showed similar morphological changes to the diabetic BBDR rat model.
Collapse
Affiliation(s)
- Lesya Novikova
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Irina V. Smirnova
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sonia Rawal
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Abby L. Dotson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Stephen H. Benedict
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
- *Lisa Stehno-Bittel:
| |
Collapse
|