1
|
Gea-Izquierdo E. Biological risk of Legionella pneumophila in irrigation systems. Rev Salud Publica (Bogota) 2023; 22:434-439. [PMID: 36753243 DOI: 10.15446/rsap.v22n4.96429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The goal of this study is to determine the risk of exposure to Legionella pneumophila in hotel golf courses located in the province of Malaga (Spain). METHOD Spray irrigation systems were analyzed as sources for spreading the Legionella bacterium. Spanish legislation requires that irrigation systems be monitored for their water quality as well as for reasons related to health and hygiene. Based on an observational study and non-parametric tests (Goodman-Kruskal Tau and uncertainty coefficient), this study states the regulatory enforcement among the systems and contributed to announce Legionella prevention. The quality criteria for recycled water, waste water treatment plant and well water were analyzed in relationship to the hotels' categories. RESULTS Deficiencies were found in the preventive maintenance of irrigation systems, but no relationship exists between the type of water and the risk detected. CONCLUSIONS The study suggests that aerosolized water used in golf course watering systems could pose risk to the population by exposing them to Legionella.
Collapse
Affiliation(s)
- Enrique Gea-Izquierdo
- EG: Ph. D. Epidemiología. Ph. D. Salud Pública. M. Sc. Medicina Preventiva y Salud Pública. M. Sc. Gestión de Riesgos Laborales, Calidad y Medio Ambiente. M. Sc. Prevención de Riesgos Profesionales en la Empresa. Pontificia Universidad Católica del Ecuador, Facultad de Medicina. Quito, Ecuador. Universidad de Málaga, Cátedra de Seguridad y Salud en el Trabajo. Málaga, España.
| |
Collapse
|
2
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Evans N, Fitzpatrick SC, Givens CE, Gordon SE, Gray JL, Green EM, Griffin DW, Hladik ML, Kanagy LK, Lisle JT, Loftin KA, Blaine McCleskey R, Medlock-Kakaley EK, Navas-Acien A, Roth DA, South P, Weis CP. Bottled water contaminant exposures and potential human effects. ENVIRONMENT INTERNATIONAL 2023; 171:107701. [PMID: 36542998 PMCID: PMC10123854 DOI: 10.1016/j.envint.2022.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | - Emily M Green
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | - John T Lisle
- U.S. Geological Survey, Saint Petersburg, Florida, USA
| | | | | | | | | | | | - Paul South
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher P Weis
- National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Logan-Jackson A, Rose JB. Cooccurrence of Five Pathogenic Legionella spp. and Two Free-Living Amoebae Species in a Complete Drinking Water System and Cooling Towers. Pathogens 2021; 10:pathogens10111407. [PMID: 34832563 PMCID: PMC8619718 DOI: 10.3390/pathogens10111407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogenic Legionella species grow optimally inside free-living amoebae to concentrations that increase risks to those who are exposed. The aim of this study was to screen a complete drinking water system and cooling towers for the occurrence of Acanthamoeba spp. and Naegleria fowleri and their cooccurrence with Legionella pneumophila, Legionella anisa, Legionella micdadei, Legionella bozemanii, and Legionella longbeachae. A total of 42 large-volume water samples, including 12 from the reservoir (water source), 24 from two buildings (influents to the buildings and exposure sites (taps)), and six cooling towers were collected and analyzed using droplet digital PCR (ddPCR). N. fowleri cooccurred with L. micdadei in 76 (32/42) of the water samples. In the building water system, the concentrations of N. fowleri and L. micdadei ranged from 1.5 to 1.6 Log10 gene copies (GC)/100 mL, but the concentrations of species increased in the cooling towers. The data obtained in this study illustrate the ecology of pathogenic Legionella species in taps and cooling towers. Investigating Legionella’s ecology in drinking and industrial waters will hopefully lead to better control of these pathogenic species in drinking water supply systems and cooling towers.
Collapse
Affiliation(s)
- Alshae Logan-Jackson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
4
|
Saad M, Chinerman D, Tabrizian M, Faucher SP. Identification of two aptamers binding to Legionella pneumophila with high affinity and specificity. Sci Rep 2020; 10:9145. [PMID: 32499557 PMCID: PMC7272621 DOI: 10.1038/s41598-020-65973-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Legionella pneumophila (Lp) is a water borne bacterium causing Legionnaires’ Disease (LD) in humans. Rapid detection of Lp in water system is essential to reduce the risk of LD outbreaks. The methods currently available require expert skills and are time intensive, thus delaying intervention. In situ detection of Lp by biosensor would allow rapid implementation of control strategies. To this end, a biorecognition element is required. Aptamers are considered promising biorecognition molecules for biosensing. Aptamers are short oligonucleotide sequence folding into a specific structure and are able to bind to specific molecules. Currently, no aptamer and thus no aptamer-based technology exists for the detection of Lp. In this study, Systemic Evolution of Ligands through EXponential enrichment (SELEX) was used to identify aptamers binding specifically to Lp. Ten rounds of positive selection and two rounds of counter-selection against two Pseudomonas species were performed. Two aptamers binding strongly to Lp were identified with KD of 116 and 135 nM. Binding specificity of these two aptamers to Lp was confirmed by flow cytometry and fluorescence microscopy. Therefore, these two aptamers are promising biorecognition molecules for the detection of Lp in water systems.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Deanna Chinerman
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada. .,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| |
Collapse
|
5
|
Water Quality as a Predictor of Legionella Positivity of Building Water Systems. Pathogens 2019; 8:pathogens8040295. [PMID: 31847120 PMCID: PMC6963558 DOI: 10.3390/pathogens8040295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Testing drinking water systems for the presence of Legionella colonization is a proactive approach to assess and reduce the risk of Legionnaires’ disease. Previous studies suggest that there may be a link between Legionella positivity in the hot water return line or certain water quality parameters (temperature, free chlorine residual, etc.) with distal site Legionella positivity. It has been suggested that these measurements could be used as a surrogate for testing for Legionella in building water systems. We evaluated the relationship between hot water return line Legionella positivity and other water quality parameters and Legionella colonization in premise plumbing systems by testing 269 samples from domestic cold and hot water samples in 28 buildings. The hot water return line Legionella positivity and distal site positivity only demonstrated a 77.8% concordance rate. Hot water return line Legionella positivity compared to distal site positivity had a sensitivity of 55% and a specificity of 96%. There was poor correlation and a low positive predictive value between the hot water return line and distal outlet positivity. There was no correlation between Legionella distal site positivity and total bacteria (heterotrophic plate count), pH, free chlorine, calcium, magnesium, zinc, manganese, copper, temperature, total organic carbon, or incoming cold-water chlorine concentration. These findings suggest that hot water return line Legionella positivity and other water quality parameters are not predictive of distal site positivity and should not be used alone to determine the building’s Legionella colonization rate and effectiveness of water management programs.
Collapse
|
6
|
Rech MM, Swalla BM, Dobranic JK. Evaluation of Legiolert for Quantification of Legionella pneumophila from Non-potable Water. Curr Microbiol 2018; 75:1282-1289. [PMID: 29980812 PMCID: PMC6132855 DOI: 10.1007/s00284-018-1522-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/01/2018] [Indexed: 11/30/2022]
Abstract
Legiolert® is a new culture method for quantification of Legionella pneumophila, which is the primary species associated with Legionnaires' disease. The test is based on a most probable number approach, and differs significantly from traditional culture methods by providing results at 7 days, rapid sample preparation and analysis, and objective interpretation of test results. In this study, we compared the performance of Legiolert with the U.S. Centers for Disease Control and Prevention (CDC) method for detection of L. pneumophila from non-potable samples, primarily comprising cooling tower waters. Our results demonstrated no significant difference between Legiolert and the CDC method for quantification of L. pneumophila. However, Legiolert showed a significant increase in sensitivity when water samples containing higher L. pneumophila concentrations were examined. Cooling tower waters often contain non-Legionella organisms (NLO) that interfere with traditional Legionella test methods, and we observed varying degrees of NLO interference on many CDC method plates. In contrast, Legiolert was resistant to NLO interference and produced a very low rate of false-positive results. Collectively, Legiolert is a sensitive and specific method for quantification of L. pneumophila from non-potable water that provides advantages over the CDC method.
Collapse
Affiliation(s)
- Melanie M Rech
- EMSL Analytical, Inc., 1010 Yuma Street, Denver, CO, 80204, USA.
| | - Brian M Swalla
- IDEXX Laboratories, Inc., 1 Idexx Dr., Westbrook, ME, 04092, USA
| | - Jason K Dobranic
- EMSL Analytical, Inc., 5950 Fairbanks North Houston Rd, Houston, TX, 77040, USA
| |
Collapse
|
7
|
Llewellyn AC, Lucas CE, Roberts SE, Brown EW, Nayak BS, Raphael BH, Winchell JM. Distribution of Legionella and bacterial community composition among regionally diverse US cooling towers. PLoS One 2017; 12:e0189937. [PMID: 29261791 PMCID: PMC5738086 DOI: 10.1371/journal.pone.0189937] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/05/2017] [Indexed: 11/19/2022] Open
Abstract
Cooling towers (CTs) are a leading source of outbreaks of Legionnaires' disease (LD), a severe form of pneumonia caused by inhalation of aerosols containing Legionella bacteria. Accordingly, proper maintenance of CTs is vital for the prevention of LD. The aim of this study was to determine the distribution of Legionella in a subset of regionally diverse US CTs and characterize the associated microbial communities. Between July and September of 2016, we obtained aliquots from water samples collected for routine Legionella testing from 196 CTs located in eight of the nine continental US climate regions. After screening for Legionella by PCR, positive samples were cultured and the resulting Legionella isolates were further characterized. Overall, 84% (164) were PCR-positive, including samples from every region studied. Of the PCR-positive samples, Legionella spp were isolated from 47% (78), L. pneumophila was isolated from 32% (53), and L. pneumophila serogroup 1 (Lp1) was isolated from 24% (40). Overall, 144 unique Legionella isolates were identified; 53% (76) of these were Legionella pneumophila. Of the 76 L. pneumophila isolates, 51% (39) were Lp1. Legionella were isolated from CTs in seven of the eight US regions examined. 16S rRNA amplicon sequencing was used to compare the bacterial communities of CT waters with and without detectable Legionella as well as the microbiomes of waters from different climate regions. Interestingly, the microbial communities were homogenous across climate regions. When a subset of seven CTs sampled in April and July were compared, there was no association with changes in corresponding CT microbiomes over time in the samples that became culture-positive for Legionella. Legionella species and Lp1 were detected frequently among the samples examined in this first large-scale study of Legionella in US CTs. Our findings highlight that, under the right conditions, there is the potential for CT-related LD outbreaks to occur throughout the US.
Collapse
Affiliation(s)
- Anna C. Llewellyn
- Laboratory Leadership Service, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Pneumonia Response and Surveillance Laboratory, Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Claressa E. Lucas
- Pneumonia Response and Surveillance Laboratory, Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Sarah E. Roberts
- Pneumonia Response and Surveillance Laboratory, Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ellen W. Brown
- Pneumonia Response and Surveillance Laboratory, Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Bina S. Nayak
- Water Quality Division, Pinellas County Utilities, Largo, FL, United States of America
| | - Brian H. Raphael
- Pneumonia Response and Surveillance Laboratory, Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jonas M. Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
8
|
Burillo A, Pedro-Botet ML, Bouza E. Microbiology and Epidemiology of Legionnaire's Disease. Infect Dis Clin North Am 2017; 31:7-27. [PMID: 28159177 DOI: 10.1016/j.idc.2016.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Legionnaire's disease (LD) is the pneumonic form of legionellosis caused by aerobic gram-negative bacilli of the genus Legionella. Individuals become infected when they inhale aerosolized water droplets contaminated with Legionella species. Forty years after the identification of Legionella pneumophila as the cause of the 1976 pneumonia outbreak in a hotel in Philadelphia, we have non-culture-based diagnostic tests, effective antibiotics, and preventive measures to handle LD. With a mortality rate still around 10%, underreporting, and sporadic outbreaks, there is still much work to be done. In this article, the authors review the microbiology, laboratory diagnosis, and epidemiology of LD.
Collapse
Affiliation(s)
- Almudena Burillo
- Division of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Luisa Pedro-Botet
- Infectious Diseases Unit, Hospital Universitario German Trías i Pujol, Carretera de Canyet s/n, 08916 Badalona, Spain; Departamento de Medicina, Area de Medicina, Universidad Autónoma de Barcelona, Plaza Cívica, Campus de la UAB, 08193 Bellaterra, Sardañola del Vallés (Barcelona), Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/1089), Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Emilio Bouza
- Division of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Agarwal S, Abell V, File TM. Nosocomial (Health Care–Associated) Legionnaire's Disease. Infect Dis Clin North Am 2017; 31:155-165. [DOI: 10.1016/j.idc.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Lessons From an Outbreak of Legionnaires' Disease on a Hematology-Oncology Unit. Infect Control Hosp Epidemiol 2016; 38:306-313. [PMID: 27919312 PMCID: PMC5887123 DOI: 10.1017/ice.2016.281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To define the scope of an outbreak of Legionnaires’ disease (LD), to identify the source, and to stop transmission. DESIGN AND SETTING Epidemiologic investigation of an LD outbreak among patients and a visitor exposed to a newly constructed hematology-oncology unit. METHODS An LD case was defined as radiographically confirmed pneumonia in a person with positive urinary antigen testing and/or respiratory culture for Legionella and exposure to the hematology-oncology unit after February 20, 2014. Cases were classified as definitely or probably healthcare-associated based on whether they were exposed to the unit for all or part of the incubation period (2–10 days). We conducted an environmental assessment and collected water samples for culture. Clinical and environmental isolates were compared by monoclonal antibody (MAb) and sequence-based typing. RESULTS Over a 12-week period, 10 cases were identified, including 6 definite and 4 probable cases. Environmental sampling revealed Legionella pneumophila serogroup 1 (Lp1) in the potable water at 9 of 10 unit sites (90%), including all patient rooms tested. The 3 clinical isolates were identical to environmental isolates from the unit (MAb2-positive, sequence type ST36). No cases occurred with exposure after the implementation of water restrictions followed by point-of-use filters. CONCLUSIONS Contamination of the unit’s potable water system with Lp1 strain ST36 was the likely source of this outbreak. Healthcare providers should routinely test patients who develop pneumonia at least 2 days after hospital admission for LD. A single case of LD that is definitely healthcare associated should prompt a full investigation.
Collapse
|
11
|
Abstract
Since first identified in early 1977, bacteria of the genus Legionella are recognised as a common cause of community-acquired pneumonia and a rare cause of hospital-acquired pneumonia. Legionella bacteria multisystem manifestations mainly affect susceptible patients as a result of age, underlying debilitating conditions, or immunosuppression. Water is the major natural reservoir for Legionella, and the pathogen is found in many different natural and artificial aquatic environments such as cooling towers or water systems in buildings, including hospitals. The term given to the severe pneumonia and systemic infection caused by Legionella bacteria is Legionnaires' disease. Over time, the prevalence of legionellosis or Legionnaires' disease has risen, which might indicate a greater awareness and reporting of the disease. Advances in microbiology have led to a better understanding of the ecological niches and pathogenesis of the condition. Legionnaires' disease is not always suspected because of its non-specific symptoms, and the diagnostic tests routinely available do not offer the desired sensitivity. However, effective antibiotics are available. Disease notification systems provide the basis for initiating investigations and limiting the scale and recurrence of outbreaks. This report reviews our current understanding of this disease.
Collapse
Affiliation(s)
- Burke A Cunha
- Infectious Disease Division, Winthrop-University Hospital, Mineola, NY, USA; School of Medicine, State University of New York, Stony Brook, NY, USA.
| | - Almudena Burillo
- Division of Clinical Microbiology and Infectious Disease, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Universidad Complutense de Madrid, Madrid, Spain
| | - Emilio Bouza
- Division of Clinical Microbiology and Infectious Disease, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Universidad Complutense de Madrid, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| |
Collapse
|
12
|
Benitez AJ, Winchell JM. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay. Diagn Microbiol Infect Dis 2016; 84:298-303. [PMID: 26867966 DOI: 10.1016/j.diagmicrobio.2016.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/26/2022]
Abstract
We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources.
Collapse
Affiliation(s)
- Alvaro J Benitez
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
13
|
Parr A, Whitney EA, Berkelman RL. Legionellosis on the Rise: A Review of Guidelines for Prevention in the United States. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2015; 21:E17-26. [PMID: 25203696 PMCID: PMC4519350 DOI: 10.1097/phh.0000000000000123] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
CONTEXT Reported cases of legionellosis more than tripled between 2001 and 2012 in the United States. The disease results primarily from exposure to aerosolized water contaminated with Legionella. OBJECTIVE To identify and describe policies and guidelines for the primary prevention of legionellosis in the US. DESIGN An Internet search for Legionella prevention guidelines in the United States at the federal and state levels was conducted from March to June 2012. Local government agency guidelines and guidelines from professional organizations that were identified in the initial search were also included. SETTING Federal, state, and local governing bodies and professional organizations. RESULTS Guidelines and regulations for the primary prevention of legionellosis (ie, Legionnaires' disease and Pontiac fever) have been developed by various public health and other government agencies at the federal, state, and local levels as well as by professional organizations. These guidelines are similar in recommending maintenance of building water systems; federal and other guidelines differ in the population/institutions targeted, the extent of technical detail, and support of monitoring water systems for levels of Legionella contamination. CONCLUSIONS Legionellosis deserves a higher public health priority for research and policy development. Guidance across public health agencies for the primary prevention of legionellosis requires strengthening as this disease escalates in importance as a cause of severe morbidity and mortality. We recommend a formal and comprehensive review of national public health guidelines for prevention of legionellosis.
Collapse
Affiliation(s)
- Alyssa Parr
- Center for Public Health Preparedness and Research, Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
14
|
Demirjian A, Lucas CE, Garrison LE, Kozak-Muiznieks NA, States S, Brown EW, Wortham JM, Beaudoin A, Casey ML, Marriott C, Ludwig AM, Sonel AF, Muder RR, Hicks LA. The Importance of Clinical Surveillance in Detecting Legionnaires' Disease Outbreaks: A Large Outbreak in a Hospital With a Legionella Disinfection System—Pennsylvania, 2011–2012. Clin Infect Dis 2015; 60:1596-602. [DOI: 10.1093/cid/civ153] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/15/2015] [Indexed: 11/13/2022] Open
|
15
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|