1
|
Prommarit K, Chittavichai T, Utthiya S, Sathitnaitham S, Vuttipongchaikij S, Wonnapinij P. General features and evolution of mitochondrial genomes in Dictyostelia (Amoebozoa). Mitochondrial DNA A DNA Mapp Seq Anal 2025:1-13. [PMID: 40193630 DOI: 10.1080/24701394.2025.2487451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Dictyostelia exhibits high diversity; however, mitochondrial genome data remain scarce for many genera. Although key features of some dictyostelid mitogenomes have been identified, several aspects remain unclear, including core gene content, segmental arrangement, and differences between 18S rRNA and mitochondrial gene phylogenies. To address these gaps, we reconstructed two complete mitogenomes-from Cavenderia subdiscoidea and Dictyostelium sp. (TH18CC)-and analyzed mitochondrial genes from ten genera and six additional complete mitogenomes from public databases. A comparison of eight complete mitogenomes revealed a conserved core of 39 protein-coding genes, 17 tRNA genes, and three rRNA genes. Two distinct segmental arrangements were identified: Dictyostelium (except D. purpureum) exhibits an A-C-B pattern, while other genera display an A-B-C pattern defined by the clusters nad9-atp1, trnC(GCA)-atp9, and rnl-nad3. Phylogenetic analyses based on 18S rDNA and mitochondrial rns suggest the transposition between segments B and C occurred after D. purpureum diverged from other Dictyostelium species, potentially involving tRNA gene displacement. In contrast, the mitochondrial protein-coding gene phylogeny differs from the rRNA trees, indicating that these gene sets may have evolved independently. These findings advance our understanding of dictyostelid mitogenome structure and evolution.
Collapse
Affiliation(s)
- Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Supanut Utthiya
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU) , Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU) , Bangkok, Thailand
| |
Collapse
|
2
|
Munoz-Ruiz R, Lamrabet O, Jauslin T, Guilhen C, Bourbon A, Cosson P. Antibacterial effectors in Dictyostelium discoideum: specific activity against different bacterial species. mSphere 2024; 9:e0047124. [PMID: 39377588 PMCID: PMC11520349 DOI: 10.1128/msphere.00471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Dictyostelium discoideum is a phagocytic amoeba continuously eating, killing, and digesting bacteria. Previous studies have detected in D. discoideum cell extracts a bacteriolytic activity effective against Klebsiella pneumoniae bacteria. In this study, we characterized bacteriolytic activities found in D. discoideum cell extracts against five different bacteria (K. pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). We first analyzed the bacteriolytic activity against these five bacteria in parallel over a range of pH values. We then measured the remaining bacteriolytic activity in D. discoideum kil1 and modA knockout mutants. We also performed partial fractionation of D. discoideum extracts and assessed activity against different bacteria. Together our results indicate that optimal bacteriolytic activity against different bacteria results from the action of different effectors. Proteomic analysis allowed us to propose a list of potential bacteriolytic effectors.IMPORTANCEMany antibacterial effectors have been characterized over the past decades, and their biological importance, mode of action, and specificity are often still under study. Here we characterized in vitro bacteriolytic activity in D. discoideum extracts against five species of Gram-negative and Gram-positive bacteria. Our results reveal that optimal lysis of different bacteria mobilizes different effectors. Proteomic analysis generated a list of potential bacteriolytic effectors. This work opens the way for future analysis of the role of individual effectors in living D. discoideum cells.
Collapse
Affiliation(s)
- Raphael Munoz-Ruiz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alixia Bourbon
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Nanda S, Pandey R, Sardar R, Panda A, Naorem A, Gupta D, Malhotra P. Comparative genomics of two protozoans Dictyostelium discoideum and Plasmodium falciparum reveals conserved as well as distinct regulatory pathways crucial for exploring novel therapeutic targets for Malaria. Heliyon 2024; 10:e38500. [PMID: 39391471 PMCID: PMC11466611 DOI: 10.1016/j.heliyon.2024.e38500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Plasmodium falciparum, which causes life-threatening cerebral malaria has rapidly gained resistance against most frontline anti-malarial drugs, thereby generating an urgent need to develop novel therapeutic approaches. Conducting in-depth investigations on Plasmodium in its native form is challenging, thereby necessitating the requirement of an efficient model system. In line, mounting evidence suggests that Dictyostelium discoideum retains both conformational and functional properties of Plasmodium proteins, however, the true potential of Dictyostelium as a host system is not fully explored. In the present study, we have exploited comparative genomics as a tool to extract, compare, and curate the extensive data available on the organism-specific databases to evaluate if D. discoideum can be established as a prime model system for functional characterization of P. falciparum genes. Through comprehensive in silico analysis, we report that despite the presence of adaptation-specific genes, the two display noteworthy conservation in the housekeeping genes, signaling pathway components, transcription regulators, and post-translational modulators. Furthermore, through orthologue analysis, the known, potential, and novel drug target genes of P. falciparum were found to be significantly conserved in D. discoideum. Our findings advocate that D. discoideum can be employed to express and functionally characterize difficult-to-express P. falciparum genes.
Collapse
Affiliation(s)
- Shivam Nanda
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashutosh Panda
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
4
|
Aoki MM, Kisiala AB, Farrow SC, Brunetti CR, Huber RJ, Emery RN. Biochemical characterization of a unique cytokinin and nucleotide phosphoribohydrolase Lonely Guy protein from Dictyostelium discoideum. Biochem Biophys Rep 2024; 39:101756. [PMID: 38978539 PMCID: PMC11228631 DOI: 10.1016/j.bbrep.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Lonely guy (LOG) proteins are phosphoribohydrolases (PRHs) that are key cytokinin (CK)-activating enzymes in plant and non-plant CK-producing organisms. During CK biosynthesis, LOGs catalyze the conversion of precursor CK-nucleotides (CK-NTs) to biologically active free base forms. LOG/PRH activity has been detected in bacteria, archaea, algae, and fungi. However, in these organisms, the LOG/PRH activity for CK-NTs and non-CK-NTs (e.g., adenine-NTs) has not been assessed simultaneously, which leaves limited knowledge about the substrate specificity of LOGs. Thus, we performed bioinformatic analyses and a biochemical characterization of a LOG ortholog from Dictyostelium discoideum, a soil-dwelling amoeba, which produces CKs during unicellular growth and multicellular development. We show that DdLog exhibits LOG/PRH activity on two CK-NTs, N 6 -isopentenyladenosine-5'-monophosphate (iPMP) and N 6 -benzyladenosine-5'-monophosphate (BAMP), and on adenosine 5'-monophosphate (AMP) but not on 3', 5'-cyclic adenosine-monophosphate (cAMP). Additionally, there were higher turnover rates for CK-NTs over AMP. Together, these findings confirm that DdLog acts as a CK-activating enzyme; however, in contrast to plant LOGs, it maintains a wider specificity for other substrates (e.g., AMP) reflecting it has maintained its original, non-CK related role even after diversifying into a CK-activating enzyme.
Collapse
Affiliation(s)
- Megan M. Aoki
- Environmental and Life Sciences, Trent University, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Nguyen JMK, Liu Y, Nguyen L, Sidhaye VK, Robinson DN. Discovery and Quantitative Dissection of Cytokinesis Mechanisms Using Dictyostelium discoideum. Methods Mol Biol 2024; 2814:1-27. [PMID: 38954194 DOI: 10.1007/978-1-0716-3894-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The social amoeba Dictyostelium discoideum is a versatile model for understanding many different cellular processes involving cell motility including chemotaxis, phagocytosis, and cytokinesis. Cytokinesis, in particular, is a model cell-shaped change process in which a cell separates into two daughter cells. D. discoideum has been used extensively to identify players in cytokinesis and understand how they comprise the mechanosensory and biochemical pathways of cytokinesis. In this chapter, we describe how we use cDNA library complementation with D. discoideum to discover potential regulators of cytokinesis. Once identified, these regulators are further analyzed through live cell imaging, immunofluorescence imaging, fluorescence correlation and cross-correlation spectroscopy, micropipette aspiration, and fluorescence recovery after photobleaching. Collectively, these methods aid in detailing the mechanisms and signaling pathways that comprise cell division.
Collapse
Affiliation(s)
- Jennifer M K Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology of Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yinan Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology of Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ly Nguyen
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology of Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zhu X, Ricci-Tam C, Hager ER, Sgro AE. Self-cleaving peptides for expression of multiple genes in Dictyostelium discoideum. PLoS One 2023; 18:e0281211. [PMID: 36862626 PMCID: PMC9980757 DOI: 10.1371/journal.pone.0281211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a model for a wide range of biological processes including chemotaxis, cell-cell communication, phagocytosis, and development. Interrogating these processes with modern genetic tools often requires the expression of multiple transgenes. While it is possible to transfect multiple transcriptional units, the use of separate promoters and terminators for each gene leads to large plasmid sizes and possible interference between units. In many eukaryotic systems this challenge has been addressed through polycistronic expression mediated by 2A viral peptides, permitting efficient, co-regulated gene expression. Here, we screen the most commonly used 2A peptides, porcine teschovirus-1 2A (P2A), Thosea asigna virus 2A (T2A), equine rhinitis A virus 2A (E2A), and foot-and-mouth disease virus 2A (F2A), for activity in D. discoideum and find that all the screened 2A sequences are effective. However, combining the coding sequences of two proteins into a single transcript leads to notable strain-dependent decreases in expression level, suggesting additional factors regulate gene expression in D. discoideum that merit further investigation. Our results show that P2A is the optimal sequence for polycistronic expression in D. discoideum, opening up new possibilities for genetic engineering in this model system.
Collapse
Affiliation(s)
- Xinwen Zhu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Emily R. Hager
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Allyson E. Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
8
|
Williams FN, Scaglione KM. Insights on Microsatellite Characteristics, Evolution, and Function From the Social Amoeba Dictyostelium discoideum. Front Neurosci 2022; 16:886837. [PMID: 35769695 PMCID: PMC9234386 DOI: 10.3389/fnins.2022.886837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Microsatellites are repetitive sequences commonly found in the genomes of higher organisms. These repetitive sequences are prone to expansion or contraction, and when microsatellite expansion occurs in the regulatory or coding regions of genes this can result in a number of diseases including many neurodegenerative diseases. Unlike in humans and other organisms, the social amoeba Dictyostelium discoideum contains an unusually high number of microsatellites. Intriguingly, many of these microsatellites fall within the coding region of genes, resulting in nearly 10,000 homopolymeric repeat proteins within the Dictyostelium proteome. Surprisingly, among the most common of these repeats are polyglutamine repeats, a type of repeat that causes a class of nine neurodegenerative diseases in humans. In this minireview, we summarize what is currently known about homopolymeric repeats and microsatellites in Dictyostelium discoideum and discuss the potential utility of Dictyostelium for identifying novel mechanisms that utilize and regulate regions of repetitive DNA.
Collapse
Affiliation(s)
- Felicia N. Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
- *Correspondence: K. Matthew Scaglione,
| |
Collapse
|
9
|
Kirolos SA, Procaccia S, Groover KE, Das R, Rijal R, Gomer RH. Identification of novel proteins in the Dictyostelium discoideum chemorepulsion pathway using REMI. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000557. [PMID: 35622529 PMCID: PMC9073555 DOI: 10.17912/micropub.biology.000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/06/2022]
Abstract
Chemorepulsion, the biased migration of a cell away from a signal, is essential for many biological processes and the ability to manipulate chemorepulsion could lead to new therapeutics for a variety of diseases. However, little is known about eukaryotic cell chemorepulsion. Utilizing the model organism Dictyostelium discoideum, we previously identified an endogenous chemorepellent protein secreted by D. discoideum cells called AprA, and proteins involved in the AprA-induced chemorepulsion pathway including the G protein-coupled receptor GrlH, G beta and G protein alpha 8 protein subunits, protein kinase A, components of the mammalian target of rapamycin complex 2 (mTORC2), phospholipase A, PTEN and a PTEN-like phosphatase (CnrN), a retinoblastoma orthologue (RblA), extracellular signal-regulated kinase 1 (Erk1), p-21 activated protein kinase D (PakD), and the Ras proteins RasC and RasG. In this report, we used a genetic screen to identify 17 additional proteins involved in the AprA-induced chemorepulsion pathway .
Collapse
Affiliation(s)
| | - Shiri Procaccia
- Department of Biology, Texas A&M University
,
Faculty of Biology, Technion - Israel Institute of Technology
| | | | | | | | - Richard H Gomer
- Department of Biology, Texas A&M University
,
Correspondence to: Richard H Gomer (
)
| |
Collapse
|
10
|
Nugraha RYB, Jeelani G, Nozaki T. Physiological roles and metabolism of γ-aminobutyric acid (GABA) in parasitic protozoa. Trends Parasitol 2022; 38:462-477. [DOI: 10.1016/j.pt.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
|
11
|
Fractional 2'-O-methylation in the ribosomal RNA of Dictyostelium discoideum supports ribosome heterogeneity in Amoebozoa. Sci Rep 2022; 12:1952. [PMID: 35121764 PMCID: PMC8817022 DOI: 10.1038/s41598-022-05447-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
A hallmark of ribosomal RNA (rRNA) are 2′-O-methyl groups that are introduced sequence specifically by box C/D small nucleolar RNAs (snoRNAs) in ribonucleoprotein particles. Most data on this chemical modification and its impact on RNA folding and stability are derived from organisms of the Opisthokonta supergroup. Using bioinformatics and RNA-seq data, we identify 30 novel box C/D snoRNAs in Dictyostelium discoideum, many of which are differentially expressed during the multicellular development of the amoeba. By applying RiboMeth-seq, we find 49 positions in the 17S and 26S rRNA 2′-O-methylated. Several of these nucleotides are substoichiometrically modified, with one displaying dynamic modification levels during development. Using homology-based models for the D. discoideum rRNA secondary structures, we localize many modified nucleotides in the vicinity of the ribosomal A, P and E sites. For most modified positions, a guiding box C/D snoRNA could be identified, allowing to determine idiosyncratic features of the snoRNA/rRNA interactions in the amoeba. Our data from D. discoideum represents the first evidence for ribosome heterogeneity in the Amoebozoa supergroup, allowing to suggest that it is a common feature of all eukaryotes.
Collapse
|
12
|
Biondo M, Panuzzo C, Ali SM, Bozzaro S, Osella M, Bracco E, Pergolizzi B. The Dynamics of Aerotaxis in a Simple Eukaryotic Model. Front Cell Dev Biol 2021; 9:720623. [PMID: 34888305 PMCID: PMC8650612 DOI: 10.3389/fcell.2021.720623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.
Collapse
Affiliation(s)
- Marta Biondo
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Shahzad M Ali
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Matteo Osella
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, Turin, Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Clapis JR, Fan MJ, Kovarik ML. Supported bilayer membranes for reducing cell adhesion in microfluidic devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1535-1540. [PMID: 33690748 DOI: 10.1039/d0ay01992e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The high surface area-to-volume ratio of microfluidic channels makes them susceptible to fouling and clogging when used for biological analyses, including cell-based assays. We evaluated the role of electrostatic and van der Waals interactions in cell adhesion in PDMS microchannels coated with supported lipid bilayers and identified conditions that resulted in minimal cell adhesion. For low ionic strength buffer, optimum results were obtained for a zwitterionic coating of pure egg phosphatidylcholine; for a rich growth medium, the best results were obtained for zwitterionic bilayers or those with slight negative or moderate positive charge from the incorporation of 5-10 mol% egg phosphatidylglycerol or 30 mol% ethylphosphocholine. In both solutions, the presence of 10 g L-1 glucose in the cell suspension reduced cell adhesion. Under optimum conditions, all cells were consistently removed from the channels, demonstrating the utility of these coatings for whole-cell microfluidic assays. These results provide practical information for immediate application and suggest future research areas on cell-lipid interactions.
Collapse
Affiliation(s)
- Julia R Clapis
- Department of Chemistry, Trinity College, 300 Summit St., Hartford, CT 06106, USA.
| | | | | |
Collapse
|
15
|
Guilhen C, Lima WC, Ifrid E, Crespo-Yañez X, Lamrabet O, Cosson P. A New Family of Bacteriolytic Proteins in Dictyostelium discoideum. Front Cell Infect Microbiol 2021; 10:617310. [PMID: 33614529 PMCID: PMC7886984 DOI: 10.3389/fcimb.2020.617310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Phagocytic cells ingest and destroy bacteria efficiently and in doing so ensure the defense of the human body against infections. Phagocytic Dictyostelium discoideum amoebae represent a powerful model system to study the intracellular mechanisms ensuring destruction of ingested bacteria in phagosomes. Here, we discovered the presence of a bacteriolytic activity against Klebsiella pneumoniae in cellular extracts from D. discoideum. The bacteriolytic activity was detected only at a very acidic pH mimicking the conditions found in D. discoideum phagosomes. It was also strongly decreased in extracts of kil1 KO cells that were previously described to kill inefficiently internalized bacteria, suggesting that the activity observed in vitro is involved in killing of bacteria in phagosomes. We purified a fraction enriched in bacteriolytic activity where only 16 proteins were detected and focused on four proteins selectively enriched in this fraction. Three of them belong to a poorly characterized family of D. discoideum proteins exhibiting a DUF3430 domain of unknown function and were named BadA (Bacteriolytic D. discoideum A), BadB, and BadC. We overexpressed the BadA protein in cells, and the bacteriolytic activity increased concomitantly in cell extracts. Conversely, depletion of BadA from cell extracts decreased significantly their bacteriolytic activity. Finally, in cells overexpressing BadA, bacterial killing was faster than in parental cells. Together these results identify BadA as a D. discoideum protein required for cellular bactericidal activity. They also define a new strategy to identify and characterize bactericidal proteins in D. discoideum cells.
Collapse
Affiliation(s)
- Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Estelle Ifrid
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Xenia Crespo-Yañez
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Martín‐González J, Montero‐Bullón J, Lacal J. Dictyostelium discoideum as a non-mammalian biomedical model. Microb Biotechnol 2021; 14:111-125. [PMID: 33124755 PMCID: PMC7888446 DOI: 10.1111/1751-7915.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dictyostelium discoideum is one of eight non-mammalian model organisms recognized by the National Institute of Health for the study of human pathology. The use of this slime mould is possible owing to similarities in cell structure, behaviour and intracellular signalling with mammalian cells. Its haploid set of chromosomes completely sequenced amenable to genetic manipulation, its unique and short life cycle with unicellular and multicellular stages, and phenotypic richness encoding many human orthologues, make Dictyostelium a representative and simple model organism to unveil cellular processes in human disease. Dictyostelium studies within the biomedical field have provided fundamental knowledge in the areas of bacterial infection, immune cell chemotaxis, autophagy/phagocytosis and mitochondrial and neurological disorders. Consequently, Dictyostelium has been used to the development of related pharmacological treatments. Herein, we review the utilization of Dictyostelium as a model organism in biomedicine.
Collapse
Affiliation(s)
- Javier Martín‐González
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Javier‐Fernando Montero‐Bullón
- Metabolic Engineering GroupDepartment of Microbiology and GeneticsUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Jesus Lacal
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| |
Collapse
|
17
|
Schäck MA, Jablonski KP, Gräf S, Klassen R, Schaffrath R, Kellner S, Hammann C. Eukaryotic life without tQCUG: the role of Elongator-dependent tRNA modifications in Dictyostelium discoideum. Nucleic Acids Res 2020; 48:7899-7913. [PMID: 32609816 PMCID: PMC7430636 DOI: 10.1093/nar/gkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.
Collapse
Affiliation(s)
- Manfred A Schäck
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| | - Kim Philipp Jablonski
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Stefanie Kellner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| |
Collapse
|
18
|
Greenhalgh JC, Chandran A, Harper MT, Ladds G, Rahman T. Proposed model of the Dictyostelium cAMP receptors bound to cAMP. J Mol Graph Model 2020; 100:107662. [PMID: 32659633 DOI: 10.1016/j.jmgm.2020.107662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is well known as a ubiquitous intracellular messenger regulating a diverse array of cellular processes. However, for a group of social amoebae or Dictyostelia undergoing starvation, intracellular cAMP is secreted in a pulsatile manner to their exterior. This then uniquely acts as a first messenger, triggering aggregation of the starving amoebae followed by their developmental progression towards multicellular fruiting bodies formation. Such developmental signalling for extracellularly-acting cAMP is well studied in the popular dictyostelid, Dictyostelium discoideum, and is mediated by a distinct family ('class E') of G protein-coupled receptors (GPCRs) collectively designated as the cAMP receptors (cARs). Whilst the biochemical aspects of these receptors are well characterised, little is known about their overall 3D architecture and structural basis for cAMP recognition and subtype-dependent changes in binding affinity. Using a ligand docking-guided homology modelling approach, we hereby present for the first time, plausible models of active forms of the cARs from D. discoideum. Our models highlight some structural features that may underlie the differential affinities of cAR isoforms for cAMP binding and also suggest few residues that may play important roles for the activation mechanism of this GPCR family.
Collapse
Affiliation(s)
| | - Aneesh Chandran
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Michigan, 48109-1065, United States
| | | | - Graham Ladds
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Taufiq Rahman
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
19
|
Lima WC, Hammel P, Cosson P. A recombinant antibody toolbox for Dictyostelium discoideum. BMC Res Notes 2020; 13:206. [PMID: 32276653 PMCID: PMC7149914 DOI: 10.1186/s13104-020-05048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Objective The amoeba Dictyostelium discoideum has been a valuable model organism to study numerous facets of eukaryotic cell biology, such as cell motility, cell adhesion, macropinocytosis and phagocytosis, host–pathogen interactions and multicellular development. However, the relative small size of the Dictyostelium community hampers the production and distribution of reagents and tools, such as antibodies, by commercial vendors. Results For the past 5 years, our laboratory has worked to promote an increased use of recombinant antibodies (rAbs) by academic laboratories. Here we report our efforts to ensure that Dictyostelium researchers have access to rAbs. Using hybridoma sequencing and phage display techniques, we generated a panel of recombinant antibodies against D. discoideum antigens, providing a useful and reliable set of reagents for labelling and characterization of proteins and subcellular compartments in D. discoideum, accessible to the entire Dictyostelium community.
Collapse
Affiliation(s)
- Wanessa C Lima
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland.
| | - Philippe Hammel
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Pierre Cosson
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland
| |
Collapse
|
20
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
21
|
Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, Utyuzh AS, Parker S, Sabbieti MG, Benedicenti S, Amaroli A. The 808 nm and 980 nm infrared laser irradiation affects spore germination and stored calcium homeostasis: A comparative study using delivery hand-pieces with standard (Gaussian) or flat-top profile. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111627. [PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
Collapse
Affiliation(s)
- Sara Ferrando
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genova, Genova, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino,Macerata, Italy
| | - Serena Mirata
- Laboratory of New Model Organism (NeMo LAB), Department of Earth, Environmental and Life Sciences, University of Genova, Genova, Italy
| | - Antonio Signore
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; Faculty of Therapeutic Stomatology, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nicola De Angelis
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; University of Technology MARA, Department of Dentistry, Sungai Buloh, Malaysia
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Anatoliy S Utyuzh
- Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991 Moscow, Russian Federation
| | - Steven Parker
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino,Macerata, Italy
| | - Stefano Benedicenti
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences (D.I.S.C), University of Genova, Genova, Italy; Department of Orthopaedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991 Moscow, Russian Federation.
| |
Collapse
|
22
|
Pergolizzi B, Panuzzo C, Ali MS, Lo Iacono M, Levron CL, Ponzone L, Prelli M, Cilloni D, Calautti E, Bozzaro S, Bracco E. Mammals and Dictyostelium rictor mutations swapping reveals two essential Gly residues for mTORC2 activity and integrity. J Cell Sci 2019; 132:jcs.236505. [DOI: 10.1242/jcs.236505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
mTORC2 regulates a variety of vital cellular processes, and its aberrant functioning is often associated with various diseases. Rictor is a peculiar and distinguishing mTORC2 component playing a pivotal role in controlling its assembly and activity. Among living organisms Rictor is conserved from unicellular eukaryotes to metazoan. We replaced two distinct, but conserved, glycines in both the Dictyostelium piaA gene and its human ortholog, rictor. The two conserved residues are spaced by approximately 50 aminoacids and both are embedded within a conserved region falling in between the Ras-GEFN2 and Rictor_V domains. The effects of point mutations on the mTORC2 activity and integrity were assessed by biochemical and functional assays.In both cases, the reciprocal exchange between mammals and Dictyostelium rictor and piaA gene point mutations impaired mTORC2 activity and integrity.Our data indicate that the two Gly residues are essential for the maintenance of mTORC2 activity and integrity in organisms that appear to be distantly related, suggesting a primeval role in the assembly and proper TOR complex 2 functioning.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - M. Shahzad Ali
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Chiara Levra Levron
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Marta Prelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Via Nizza 52, Torino, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, AOU S. Luigi, 10043 Orbassano (TO), Italy
| |
Collapse
|
23
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Litschko C, Damiano-Guercio J, Brühmann S, Faix J. Analysis of Random Migration of Dictyostelium Amoeba in Confined and Unconfined Environments. Methods Mol Biol 2018; 1749:341-350. [PMID: 29526008 DOI: 10.1007/978-1-4939-7701-7_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dictyostelium discoideum has proven to be an excellent model to study amoeboid cell migration. During their life cycle, Dictyostelium cells exhibit distinct modes of motility. Individual growth-phase cells explore new territories by random cell migration using the core cell motility machinery, but they can also hunt bacteria by detection and chemotaxis toward the by-product folate. After depletion of nutrients, the cells initiate a developmental program allowing streaming of the cells into aggregation centers by chemotaxis toward cAMP and by cell-to-cell adhesion. Subsequent development is associated with complex rotational movement of the compacted aggregates to drive cell type specific sorting, which in turn is necessary for terminal culmination and formation of fruiting bodies. Here we describe a protocol for the analyses of cell motility of vegetative Dictyostelium cells in unconfined and mechanically confined settings.
Collapse
Affiliation(s)
- Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Mathavarajah S, Flores A, Huber RJ. Dictyostelium discoideum
: A Model System for Cell and Developmental Biology. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpet.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ana Flores
- Department of Biology, Trent University Peterborough Ontario Canada
| | - Robert J. Huber
- Department of Biology, Trent University Peterborough Ontario Canada
| |
Collapse
|
26
|
Pergolizzi B, Bozzaro S, Bracco E. G-Protein Dependent Signal Transduction and Ubiquitination in Dictyostelium. Int J Mol Sci 2017; 18:ijms18102180. [PMID: 29048338 PMCID: PMC5666861 DOI: 10.3390/ijms18102180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Enrico Bracco
- Department of Oncology, University of Turin, AOU S. Luigi, 10043 Orbassano TO, Italy.
| |
Collapse
|
27
|
Brenz Y, Ohnezeit D, Winther-Larsen HC, Hagedorn M. Nramp1 and NrampB Contribute to Resistance against Francisella in Dictyostelium. Front Cell Infect Microbiol 2017; 7:282. [PMID: 28680861 PMCID: PMC5478718 DOI: 10.3389/fcimb.2017.00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The Francisella genus comprises highly pathogenic bacteria that can cause fatal disease in their vertebrate and invertebrate hosts including humans. In general, Francisella growth depends on iron availability, hence, iron homeostasis must be tightly regulated during Francisella infection. We used the system of the professional phagocyte Dictyostelium and the fish pathogen F. noatunensis subsp. noatunensis (F.n.n.) to investigate the role of the host cell iron transporters Nramp (natural resistance associated macrophage proteins) during Francisella infection. Like its mammalian ortholog, Dictyostelium Nramp1 transports iron from the phagosome into the cytosol, whereas the paralog NrampB is located on the contractile vacuole and controls, together with Nramp1, the cellular iron homeostasis. In Dictyostelium, Nramp1 localized to the F.n.n.-phagosome but disappeared from the compartment dependent on the presence of IglC, an established Francisella virulence factor. In the absence of Nramp transporters the bacteria translocated more efficiently from the phagosome into the host cell cytosol, its replicative niche. Increased escape rates coincided with increased proteolytic activity in bead-containing phagosomes indicating a role of the Nramp transporters for phagosomal maturation. In the nramp mutants, a higher bacterial load was observed in the replicative phase compared to wild-type host cells. Upon bacterial access to the cytosol of wt cells, mRNA levels of bacterial iron uptake factors were transiently upregulated. Decreased iron levels in the nramp mutants were compensated by a prolonged upregulation of the iron scavenging system. These results show that Nramps contribute to host cell immunity against Francisella infection by influencing the translocation efficiency from the phagosome to the cytosol but not by restricting access to nutritional iron in the cytosol.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Denise Ohnezeit
- Institute for Medical Microbiology, Hygiene and Virology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution and Department of Pharmaceutical Biosciences, University of OsloOslo, Norway
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs UniversityBremen, Germany
| |
Collapse
|
28
|
Pergolizzi B, Bracco E, Bozzaro S. A new HECT ubiquitin ligase regulating chemotaxis and development in Dictyostelium discoideum. J Cell Sci 2017; 130:551-562. [PMID: 28049717 DOI: 10.1242/jcs.194225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023] Open
Abstract
Cyclic AMP (cAMP) binding to G-protein-coupled receptors (GPCRs) orchestrates chemotaxis and development in Dictyostelium. By activating the RasC-TORC2-PKB (PKB is also known as AKT in mammals) module, cAMP regulates cell polarization during chemotaxis. TORC2 also mediates GPCR-dependent stimulation of adenylyl cyclase A (ACA), enhancing cAMP relay and developmental gene expression. Thus, mutants defective in the TORC2 Pia subunit (also known as Rictor in mammals) are impaired in chemotaxis and development. Near-saturation mutagenesis of a Pia mutant by random gene disruption led to selection of two suppressor mutants in which spontaneous chemotaxis and development were restored. PKB phosphorylation and chemotactic cell polarization were rescued, whereas Pia-dependent ACA stimulation was not restored but bypassed, leading to cAMP-dependent developmental gene expression. Knocking out the gene encoding the adenylylcyclase B (ACB) in the parental strain showed ACB to be essential for this process. The gene tagged in the suppressor mutants encodes a newly unidentified HECT ubiquitin ligase that is homologous to mammalian HERC1, but harbours a pleckstrin homology domain. Expression of the isolated wild-type HECT domain, but not a mutant HECT C5185S form, from this protein was sufficient to reconstitute the parental phenotype. The new ubiquitin ligase appears to regulate cell sensitivity to cAMP signalling and TORC2-dependent PKB phosphorylation.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| |
Collapse
|
29
|
Amaroli A, Benedicenti A, Ferrando S, Parker S, Selting W, Gallus L, Benedicenti S. Photobiomodulation by Infrared Diode Laser: Effects on Intracellular Calcium Concentration and Nitric Oxide Production of Paramecium. Photochem Photobiol 2016; 92:854-862. [PMID: 27716941 DOI: 10.1111/php.12644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
In Paramecium, cilia beating is correlated to intracellular calcium concentration ([Ca2+ ]i) and nitric oxide (NO) synthesis. Recent findings affirm that photobiomodulation (PBM) can transiently increase the [Ca2+ ]i in mammalian cells. In this study, we investigated the effect of both 808 and 980 nm diode laser irradiated with flat-top hand-piece on [Ca2+ ]i and NO production of Paramecium primaurelia, to provide basic information for the development of new therapeutic approaches. In the experiments, the laser power in CW varied (0.1; 0.5; 1; and 1.5 W) to generate the following respective fluences: 6.4; 32; 64; and 96 J cm-2 . The 6.4 J cm-2 did not induce PBM if irradiated by both 808 and 980 nm diode laser. Conversely, the 32 J cm-2 fluence had no effect on Paramecium cells if irradiated by the 808 nm laser, while if irradiated by the 980 nm laser induced increment in swimming speed (suggesting an effect on the [Ca2+ ]i, NO production, similar to the 64 J cm-2 with the 808 nm wavelength). The more evident discordance occurred with the 96 J cm-2 fluence, which had the more efficient effect on PBM among the parameters if irradiated with the 808 nm laser and killed the Paramecium cells if irradiated by the 980 nm laser. Lastly, the 980 nm and 64 or 96 J cm-2 were the only parameters to induce a release of stored calcium.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Wayne Selting
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| |
Collapse
|
30
|
Koller B, Schramm C, Siebert S, Triebel J, Deland E, Pfefferkorn AM, Rickerts V, Thewes S. Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts. Front Microbiol 2016; 7:1665. [PMID: 27818653 PMCID: PMC5073093 DOI: 10.3389/fmicb.2016.01665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae) and pathogenic (Candida sp.) yeast. We show that Dictyostelium can be co-cultivated with yeasts on solid media, offering a convenient test to study the interaction between fungi and phagocytes. We demonstrate that a number of D. discoideum mutants increase (atg1-, kil1-, kil2-) or decrease (atg6-) the ability of the amoebae to predate yeast cells. On the yeast side, growth characteristics, reduced phagocytosis rate, as well as known virulence factors of C. albicans (EFG1, CPH1, HGC1, ICL1) contribute to the resistance of yeast cells against predation by the amoebae. Investigating haploid C. albicans strains, we suggest using the amoebae plate test for screening purposes after random mutagenesis. Finally, we discuss the potential of our adapted amoebae plate test to use D. discoideum for risk assessment of yeast strains.
Collapse
Affiliation(s)
- Barbara Koller
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Christin Schramm
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität BerlinBerlin, Germany; FG16, Robert Koch InstituteBerlin, Germany
| | - Susann Siebert
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - János Triebel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Eric Deland
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Anna M Pfefferkorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | | | - Sascha Thewes
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
31
|
Ibo M, Srivastava V, Robinson DN, Gagnon ZR. Cell Blebbing in Confined Microfluidic Environments. PLoS One 2016; 11:e0163866. [PMID: 27706201 PMCID: PMC5051935 DOI: 10.1371/journal.pone.0163866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation.
Collapse
Affiliation(s)
- Markela Ibo
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, MD, 21218, United States of America
| | - Vasudha Srivastava
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, United States of America
| | - Douglas N. Robinson
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, United States of America
| | - Zachary R. Gagnon
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, MD, 21218, United States of America
- * E-mail:
| |
Collapse
|
32
|
Albers T, Maniak M, Beitz E, von Bülow J. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress. PLoS One 2016; 11:e0162065. [PMID: 27597994 PMCID: PMC5012570 DOI: 10.1371/journal.pone.0162065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC− cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases.
Collapse
Affiliation(s)
- Tineke Albers
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Eric Beitz
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Julia von Bülow
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
33
|
Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S. 808-nm laser therapy with a flat-top handpiece photobiomodulates mitochondria activities of Paramecium primaurelia (Protozoa). Lasers Med Sci 2016; 31:741-7. [PMID: 26984347 DOI: 10.1007/s10103-016-1901-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Photobiomodulation is proposed as a non-linear process, and only low-level laser therapy (LLLT) is assumed to stimulate exposed cells, whereas high powered laser and fluences can cause negative effects, exhausting the cell's energy reserve as a consequence of excessive photon-based stimulation. In our work, we investigated and compared the effects of 808-nm diode laser (CW) with a new flat-top handpiece. To this purpose, we tested the photobiomodulation effects of 1 and 3 J/cm(2) fluence, both generated by 100 mW or 1 W of laser power and of 64 J/cm(2) of fluence generated by 100 mW, 1 W, 1.5 W or 2 W, as expressed through oxygen consumption and ATP synthesis of Paramecium. Data collected indicates the incremental consumption of oxygen through irradiation with 3 J/cm(2)-100 mW or 64 J/cm(2)-1 W correlates with an increase in Paramecium ATP synthesis. The Paramecium respiration was inhibited by fluences 64 J/cm(2)-100 mW or 64 J/cm(2)-2 W and was followed by a decrease in the endogenous ATP concentration. The 1 J/cm(2)-100 mW or 1 W and 3 J/cm(2)-1 W did not affect mitochondrial activity. The results show that the fluence of 64 J/cm(2)-1 W more than the 3 J/cm(2)-100 mW causes greater efficiency in Paramecium mitochondria respiratory chain activity. Our results suggest that thanks to flat-top handpiece we used, high fluences by high-powered laser have to be reconsidered as an effective and non-invasive therapy. Possible associated benefits of deeper tissue penetration would increase treatment effectiveness and reduced irradiation time.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, Protistology Laboratory, University of Genoa, Corso Europa, 26, 16132, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Largo R. Benzi, 10, 16132, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Largo R. Benzi, 10, 16132, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Largo R. Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
34
|
Buracco S, Peracino B, Cinquetti R, Signoretto E, Vollero A, Imperiali F, Castagna M, Bossi E, Bozzaro S. Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux. J Cell Sci 2015; 128:3304-16. [PMID: 26208637 PMCID: PMC4582194 DOI: 10.1242/jcs.173153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023] Open
Abstract
The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in the contractile vacuole membrane and controls, synergistically with Nramp1, iron homeostasis. It has long been debated whether mammalian Nramp1 mediates iron import or export from phagosomes. By selectively loading the iron-chelating fluorochrome calcein in macropinosomes, we show that Dictyostelium Nramp1 mediates iron efflux from macropinosomes in vivo. To gain insight in ion selectivity and the transport mechanism, the proteins were expressed in Xenopus oocytes. Using a novel assay with calcein, and electrophysiological and radiochemical assays, we show that Nramp1, similar to rat DMT1 (also known as SLC11A2), transports Fe(2+) and manganese, not Fe(3+) or copper. Metal ion transport is electrogenic and proton dependent. By contrast, Nramp2 transports only Fe(2+) in a non-electrogenic and proton-independent way. These differences reflect evolutionary divergence of the prototypical Nramp2 protein sequence compared to the archetypical Nramp1 and DMT1 proteins.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Elena Signoretto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, Milano 20133, Italy
| | - Alessandra Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Francesca Imperiali
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, Milano 20133, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| |
Collapse
|
35
|
Von Bülow J, Beitz E. Number and regulation of protozoan aquaporins reflect environmental complexity. THE BIOLOGICAL BULLETIN 2015; 229:38-46. [PMID: 26338868 DOI: 10.1086/bblv229n1p38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.
Collapse
Affiliation(s)
- Julia Von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| |
Collapse
|
36
|
Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa). Photochem Photobiol 2015; 91:1150-5. [PMID: 26118482 DOI: 10.1111/php.12486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. To clarify the mechanisms of action of PBM at cellular and organism levels, we investigated its effect on Paramecium primaurelia (Protozoa) irradiated by an 808 nm infrared diode laser with a flat-top handpiece (1 W in CW). Our results led to the conclusion that: (1) the 808 nm laser stimulates the P. primaurelia without a thermal effect, (2) the laser effect is demonstrated by an increase in swimming speed and in food vacuole formation, (3) the laser treatment affects endogenous adenosine triphosphate (ATP) production in a positive way, (4) the effects of irradiation dose suggest an optimum exposure time of 50 s (64 J cm(-2) of fluence) to stimulate the Paramecium cells; irradiation of 25 s shows no effect or only mild effects and irradiation up to 100 s does not increase the effect observed with 50 s of treatment, (5) the increment of endogenous ATP concentration highlights the positive photobiomodulating effect of the 808 nm laser and the optimal irradiation conditions by the flat-top handpiece.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, Protistology Laboratory, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostic, University of Genoa, Genoa, Italy
| |
Collapse
|
37
|
Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S. The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: The effects of an 808nm infrared laser diode on cellular respiration. Altern Lab Anim 2015; 43:155-62. [PMID: 26256394 DOI: 10.1177/026119291504300305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. Unfortunately, conflicting literature has led to the labelling of PBM as a complementary or alternative medicine approach. However, past and ongoing clinical and research studies by reputable investigators have re-established the merits of PBM as a genuine medical therapy, and the technique has, in the last decade, seen an exponential increase in the numbers of clinical instruments available, and their applications. This resurgence has led to a clear need for appropriate experimental models to test the burgeoning laser technology being developed for medical applications. In this context, an ethical model that employs the protozoan, Paramecium primaurelia, is proposed. We studied the possibility of using the measure of oxygen consumption to test PBM by irradiation with an infrared or near-infrared laser. The results show that an 808nm infrared laser diode (1W; 64J/cm²) affects cellular respiration in P. primaurelia, inducing, in the irradiated cells, a significantly (p < 0.05) increased oxygen consumption of about 40%. Our findings indicate that Paramecium can be an excellent tool in biological assays involving infrared and near-infrared PBM, as it combines the advantages of in vivo results with the practicality of in vitro testing. This test represents a fast, inexpensive and straightforward assay, which offers an alternative to both traditional in vivo testing and more expensive mammalian cellular cultures.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environmental and Life Sciences, Protistology Laboratory, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Laboratory, University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
38
|
Amaroli A, Parker S, Dorigo G, Benedicenti A, Benedicenti S. Paramecium: A Promising Non-Animal Bioassay to Study the Effect of 808 nm Infrared Diode Laser Photobiomodulation. Photomed Laser Surg 2015; 33:35-40. [DOI: 10.1089/pho.2014.3829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrea Amaroli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Steven Parker
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Gianluca Dorigo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Alberico Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Assembly of the TgrB1-TgrC1 cell adhesion complex during Dictyostelium discoideum development. Biochem J 2014; 459:241-9. [PMID: 24490801 DOI: 10.1042/bj20131594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, TgrB1 and TgrC1 are partners of a heterophilic cell-adhesion system. To investigate its assembly process, the split GFP complementation assay was used to track the oligomeric status of both proteins. The ability of TgrC1 to form cis-homodimers spontaneously was demonstrated by fluorescence complementation studies and confirmed by chemical cross-linking. In contrast, TgrB1 failed to form cis-homodimers in the absence of TgrC1. Treatment of cell aggregates with antibodies against TgrB1 or TgrC1 did not affect TgrC1 dimerization, but inhibited TgrB1 dimer formation, suggesting that TgrB1 cis-homodimerization is dependent on trans-interaction with TgrC1. When TgrB1 and TgrC1 conjugated with the complementary halves of GFP were co-expressed in cells, cis-heterodimers were not detected. However, weak FRET signals were detected in cells expressing TgrB1-RFP and TgrC1-GFP, suggesting that TgrB1 dimers and TgrC1 dimers were arranged juxtapose to each other in the adhesion complex. The results of the present study suggest that the assembly process is initiated upon trans-interaction of monomeric TgrB1 with TgrC1 homodimers on adjacent cells, which triggers the formation of TgrB1 dimers. The homodimerization of TgrB1 in turn induces the clustering of TgrB1 and TgrC1, and the coalescence of TgrB1-TgrC1 clusters results in the formation of large adhesion complexes.
Collapse
|
40
|
Leippe M. Pore-forming toxins from pathogenic amoebae. Appl Microbiol Biotechnol 2014; 98:4347-53. [PMID: 24676751 DOI: 10.1007/s00253-014-5673-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022]
Abstract
Some amoeboid protozoans are facultative or obligate parasites in humans and bear an enormous cytotoxic potential that can result in severe destruction of host tissues and fatal diseases. Pathogenic amoebae produce soluble pore-forming polypeptides that bind to prokaryotic and eukaryotic target cell membranes and generate pores upon insertion and oligomerization. This review summerizes the current knowledge of such small protein toxins from amoebae, compares them with related proteins from other species, focuses on their three-dimensional structures, and gives insights into divergent activation mechanisms. The potential use of pore-forming toxins in biotechnology will be briefly outlined.
Collapse
Affiliation(s)
- Matthias Leippe
- Zoological Institute, Zoophysiology, University of Kiel, Olshausenstrasse 40, 24098, Kiel, Germany,
| |
Collapse
|
41
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|