1
|
Ramadan WS, Ahmed SBM, Talaat IM, Lozon L, Mouffak S, Gemoll T, Mansour WY, El-Awady R. The histone acetyltransferase CBP participates in regulating the DNA damage response through ATM after double-strand breaks. Genome Biol 2025; 26:89. [PMID: 40200339 PMCID: PMC11980100 DOI: 10.1186/s13059-025-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Spatial and temporal control of DNA damage response pathways after DNA damage is crucial for maintenance of genomic stability. Ataxia telangiectasia mutated (ATM) protein plays a central role in DNA damage response pathways. The chain of events following induction of DNA damage that results in full activation of ATM is still evolving. Here we set out to explore the role of CREB-binding protein (CBP), a histone acetyltransferase (HAT), in DNA damage response, particularly in the ATM activation pathway. RESULTS In response to DNA damage, CBP is stabilized and is recruited at sites of DNA double-strand breaks where it acetylates ATM and promotes its kinase activity. Cells deficient in CBP display an impairment in DNA double-strand break repair and high sensitivity to chemo- and radiotherapy. Importantly, re-expressing CBP's HAT domain in CBP-deficient cells restores the DNA repair capability, demonstrating the essential role of CBP's HAT domain in repairing DNA double-strand breaks. CONCLUSIONS Together, our findings shed the light on CBP as a key participant in the ATM activation pathway and in the subsequent repair of DNA double-strand breaks, which may serve as a potential target to modulate the cellular response to DNA damaging agents in cancer.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Samrein B M Ahmed
- School of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Lama Lozon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Soraya Mouffak
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Wael Y Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Mildred Scheel Cancer Career Center, HaTriCS4 Program, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- II. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Li L, Yang B, Wang J, Wei Y, Xiang B, Liu Y, Wu P, Li W, Wang Y, Zhao X, Qin J, Liu M, Liu R, Ma G, Fu T, Wang M, Liu B. CobB-mediated deacetylation of the chaperone CesA regulates Escherichia coli O157:H7 virulence. Gut Microbes 2024; 16:2331435. [PMID: 38502202 PMCID: PMC10956630 DOI: 10.1080/19490976.2024.2331435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a common food-borne pathogen that can cause acute diseases. Lysine acetylation is a post-translational modification (PTM) that occurs in various prokaryotes and is regulated by CobB, the only deacetylase found in bacteria. Here, we demonstrated that CobB plays an important role in the virulence of EHEC O157:H7 and that deletion of cobB significantly decreased the intestinal colonization ability of bacteria. Using acetylation proteomic studies, we systematically identified several proteins that could be regulated by CobB in EHEC O157:H7. Among these CobB substrates, we found that acetylation at the K44 site of CesA, a chaperone for the type-III secretion system (T3SS) translocator protein EspA, weakens its binding to EspA, thereby reducing the stability of this virulence factor; this PTM ultimately attenuating the virulence of EHEC O157:H7. Furthermore, we showed that deacetylation of the K44 site, which is deacetylated by CobB, promotes the interaction between CesA and EspA, thereby increasing bacterial virulence in vitro and in animal experiments. In summary, we showed that acetylation influences the virulence of EHEC O157:H7, and uncovered the mechanism by which CobB contributes to bacterial virulence based on the regulation of CesA deacetylation.
Collapse
Affiliation(s)
- Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jing Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Binbin Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Pan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Wanwu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guozhen Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tian Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| |
Collapse
|
3
|
Kim D, Seok OH, Ju S, Kim SY, Kim JM, Lee C, Hwang CS. Detection of Nα-terminally formylated native proteins by a pan-N-formyl methionine-specific antibody. J Biol Chem 2023; 299:104652. [PMID: 36990220 PMCID: PMC10164907 DOI: 10.1016/j.jbc.2023.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
N-formyl methionine (fMet)-containing proteins are produced in bacteria, eukaryotic organelles mitochondria and plastids, and even in cytosol. However, Nα-terminally (Nt-) formylated proteins have been poorly characterized because of the lack of appropriate tools to detect fMet independently of downstream proximal sequences. Using a fMet-Gly-Ser-Gly-Cys peptide as an antigen, we generated a pan-fMet-specific rabbit polyclonal antibody called anti-fMet. The raised anti-fMet recognized universally and sequence context-independently Nt-formylated proteins in bacterial, yeast, and human cells as determined by a peptide spot array, dot blotting, and immunoblotting. We anticipate that the anti-fMet antibody will be broadly used to enable an understanding of the poorly explored functions and mechanisms of Nt-formylated proteins in various organisms.
Collapse
|
4
|
Kim SY, Sim CK, Zhang Q, Tang H, Brunmeir R, Pan H, Karnani N, Han W, Zhang K, Xu F. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation. PLoS One 2016; 11:e0162528. [PMID: 27606599 PMCID: PMC5015836 DOI: 10.1371/journal.pone.0162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023] Open
Abstract
Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.
Collapse
Affiliation(s)
- Sun-Yee Kim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Choon Kiat Sim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Qiongyi Zhang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Hui Tang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Reinhard Brunmeir
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Hong Pan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (KZ); (FX)
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
- * E-mail: (KZ); (FX)
| |
Collapse
|
5
|
Sandomenico A, Focà A, Sanguigno L, Caporale A, Focà G, Pignalosa A, Corvino G, Caragnano A, Beltrami AP, Antoniali G, Tell G, Leonardi A, Ruvo M. Monoclonal antibodies against pools of mono- and polyacetylated peptides selectively recognize acetylated lysines within the context of the original antigen. MAbs 2016; 8:1575-1589. [PMID: 27560983 DOI: 10.1080/19420862.2016.1225643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Post-translational modifications (PTMs) strongly influence the structure and function of proteins. Lysine side chain acetylation is one of the most widespread PTMs, and it plays a major role in several physiological and pathological mechanisms. Protein acetylation may be detected by mass spectrometry (MS), but the use of monoclonal antibodies (mAbs) is a useful and cheaper option. Here, we explored the feasibility of generating mAbs against single or multiple acetylations within the context of a specific sequence. As a model, we used the unstructured N-terminal domain of APE1, which is acetylated on Lys27, Lys31, Lys32 and Lys35. As immunogen, we used a peptide mixture containing all combinations of single or multi-acetylated variants encompassing the 24-39 protein region. Targeted screening of the resulting clones yielded mAbs that bind with high affinity to only the acetylated APE1 peptides and the acetylated protein. No binding was seen with the non-acetylated variant or unrelated acetylated peptides and proteins, suggesting a high specificity for the APE1 acetylated molecules. MAbs could not finely discriminate between the differently acetylated variants; however, they specifically bound the acetylated protein in mammalian cell extracts and in intact cells and tissue slices from both breast cancers and from a patient affected by idiopathic dilated cardiomyopathy. The data suggest that our approach is a rapid and cost-effective method to generate mAbs against specific proteins modified by multiple acetylations or other PTMs.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | - Annalia Focà
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | | | - Andrea Caporale
- c Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB) , Napoli , Italy
| | - Giuseppina Focà
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | - Angelica Pignalosa
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| | | | - Angela Caragnano
- d University of Udine , Department of Medical and Biological Sciences , Udine , Italy
| | | | - Giulia Antoniali
- d University of Udine , Department of Medical and Biological Sciences , Udine , Italy
| | - Gianluca Tell
- d University of Udine , Department of Medical and Biological Sciences , Udine , Italy
| | - Antonio Leonardi
- e University of Napoli "Federico II," Department of Molecular Medicine and Medical Biotechnology , Napoli , Italy
| | - Menotti Ruvo
- a Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche (IBB-CNR) , Napoli , Italy
| |
Collapse
|
6
|
Ouidir T, Kentache T, Hardouin J. Protein lysine acetylation in bacteria: Current state of the art. Proteomics 2015; 16:301-9. [DOI: 10.1002/pmic.201500258] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Tassadit Ouidir
- CNRS, UMR 6270, Polymères, Biopolymères; Surfaces Laboratory; Mont-Saint-Aignan France
- Normandie University; UR France
- PISSARO proteomic facility; IRIB; Mont-Saint-Aignan France
| | - Takfarinas Kentache
- CNRS, UMR 6270, Polymères, Biopolymères; Surfaces Laboratory; Mont-Saint-Aignan France
- Normandie University; UR France
- PISSARO proteomic facility; IRIB; Mont-Saint-Aignan France
| | - Julie Hardouin
- CNRS, UMR 6270, Polymères, Biopolymères; Surfaces Laboratory; Mont-Saint-Aignan France
- Normandie University; UR France
- PISSARO proteomic facility; IRIB; Mont-Saint-Aignan France
| |
Collapse
|
7
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|