1
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
2
|
Paradis JS, Feng X, Murat B, Jefferson RE, Sokrat B, Szpakowska M, Hogue M, Bergkamp ND, Heydenreich FM, Smit MJ, Chevigné A, Bouvier M, Barth P. Computationally designed GPCR quaternary structures bias signaling pathway activation. Nat Commun 2022; 13:6826. [PMID: 36369272 PMCID: PMC9652377 DOI: 10.1038/s41467-022-34382-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Communication across membranes controls critical cellular processes and is achieved by receptors translating extracellular signals into selective cytoplasmic responses. While receptor tertiary structures can be readily characterized, receptor associations into quaternary structures are challenging to study and their implications in signal transduction remain poorly understood. Here, we report a computational approach for predicting receptor self-associations, and designing receptor oligomers with various quaternary structures and signaling properties. Using this approach, we designed chemokine receptor CXCR4 dimers with reprogrammed binding interactions, conformations, and abilities to activate distinct intracellular signaling proteins. In agreement with our predictions, the designed CXCR4s dimerized through distinct conformations and displayed different quaternary structural changes upon activation. Consistent with the active state models, all engineered CXCR4 oligomers activated the G protein Gi, but only specific dimer structures also recruited β-arrestins. Overall, we demonstrate that quaternary structures represent an important unforeseen mechanism of receptor biased signaling and reveal the existence of a bias switch at the dimer interface of several G protein-coupled receptors including CXCR4, mu-Opioid and type-2 Vasopressin receptors that selectively control the activation of G proteins vs β-arrestin-mediated pathways. The approach should prove useful for predicting and designing receptor associations to uncover and reprogram selective cellular signaling functions.
Collapse
Affiliation(s)
- Justine S Paradis
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Xiang Feng
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Brigitte Murat
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Robert E Jefferson
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Badr Sokrat
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mireille Hogue
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Nick D Bergkamp
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Franziska M Heydenreich
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
3
|
Dimerization of β 2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism. Cell Chem Biol 2022; 29:1532-1540.e5. [PMID: 36167077 DOI: 10.1016/j.chembiol.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gαs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR.
Collapse
|
4
|
Besson B, Eun H, Kim S, Windisch MP, Bourhy H, Grailhe R. Optimization of BRET saturation assays for robust and sensitive cytosolic protein-protein interaction studies. Sci Rep 2022; 12:9987. [PMID: 35705637 PMCID: PMC9200754 DOI: 10.1038/s41598-022-12851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) saturation is a method of studying protein–protein interaction (PPI) upon quantification of the dependence of the BRET signal on the acceptor/donor (A:D) expression ratio. In this study, using the very bright Nluc/YFP BRET pair acquired respectively with microplate reader and automated confocal microscopy, we significantly improved BRET saturation assay by extending A:D expression detection range and normalizing A:D expression with a new BRET-free probe. We next found that upon using variable instead of fixed amount of donor molecules co-expressed with increasing acceptor concentrations, BRET saturation assay robustness can be further improved when studying cytosolic protein, although the relative amounts of dimers (BRETmax) and the relative dimer affinity (BRET50) remain similar. Altogether, we show that our method can be applied to many PPI networks, involving the NF-κB pathway, high-affinity nanobody, rabies virus-host interactions, mTOR complex and JAK/STAT signaling. Altogether our approach paves the way for robust PPI validation and characterization in living cells.
Collapse
Affiliation(s)
- Benoit Besson
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.,Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, 28 rue du docteur Roux, 75015, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75015, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Seonhee Kim
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Marc P Windisch
- Applied Molecular Virology, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Herve Bourhy
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, 28 rue du docteur Roux, 75015, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.
| |
Collapse
|
5
|
Ward RJ, Pediani JD, Marsango S, Jolly R, Stoneman MR, Biener G, Handel TM, Raicu V, Milligan G. Chemokine receptor CXCR4 oligomerization is disrupted selectively by the antagonist ligand IT1t. J Biol Chem 2021; 296:100139. [PMID: 33268380 PMCID: PMC7949023 DOI: 10.1074/jbc.ra120.016612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
CXCR4, a member of the family of chemokine-activated G protein-coupled receptors, is widely expressed in immune response cells. It is involved in both cancer development and progression as well as viral infection, notably by HIV-1. A variety of methods, including structural information, have suggested that the receptor may exist as a dimer or an oligomer. However, the mechanistic details surrounding receptor oligomerization and its potential dynamic regulation remain unclear. Using both biochemical and biophysical means, we confirm that CXCR4 can exist as a mixture of monomers, dimers, and higher-order oligomers in cell membranes and show that oligomeric structure becomes more complex as receptor expression levels increase. Mutations of CXCR4 residues located at a putative dimerization interface result in monomerization of the receptor. Additionally, binding of the CXCR4 antagonist IT1t-a small drug-like isothiourea derivative-rapidly destabilizes the oligomeric structure, whereas AMD3100, another well-characterized CXCR4 antagonist, does not. Although a mutation that regulates constitutive activity of CXCR4 also results in monomerization of the receptor, binding of IT1t to this variant promotes receptor dimerization. These results provide novel insights into the basal organization of CXCR4 and how antagonist ligands of different chemotypes differentially regulate its oligomerization state.
Collapse
Affiliation(s)
- Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John D Pediani
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Richard Jolly
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
6
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Common activation mechanism of class A GPCRs. eLife 2019; 8:e50279. [PMID: 31855179 PMCID: PMC6954041 DOI: 10.7554/elife.50279] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Class A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. Understanding receptor activation mechanism is critical for discovering novel therapeutics since about one-third of all marketed drugs target members of this family. GPCR activation is an allosteric process that couples agonist binding to G-protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue level changes of this movement remain less well understood. Here, we report a framework to quantify conformational changes. By analyzing the conformational changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY, Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with G-protein coupling region. Site-directed mutagenesis experiments support this proposition and reveal that rational mutations of residues in this pathway can be used to obtain receptors that are constitutively active or inactive. The common activation pathway provides the mechanistic interpretation of constitutively activating, inactivating and disease mutations. As a module responsible for activation, the common pathway allows for decoupling of the evolution of the ligand binding site and G-protein-binding region. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.
Collapse
Affiliation(s)
- Qingtong Zhou
- iHuman InstituteShanghaiTech UniversityShanghaiChina
| | - Dehua Yang
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Meng Wu
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Guo
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Wanjing Guo
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Li Zhong
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Antao Dai
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Zhi-Jie Liu
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Raymond C Stevens
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - M Madan Babu
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- School of PharmacyFudan UniversityShanghaiChina
| | - Suwen Zhao
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
8
|
Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RAD. Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis. Pharmacol Res Perspect 2019; 7:e00513. [PMID: 31384473 PMCID: PMC6667744 DOI: 10.1002/prp2.513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
Relaxin family peptide 1 (RXFP1) is the receptor for relaxin a peptide hormone with important therapeutic potential. Like many G protein-coupled receptors (GPCRs), RXFP1 has been reported to form homodimers. Given the complex activation mechanism of RXFP1 by relaxin, we wondered whether homodimerization may be explicitly required for receptor activation, and therefore sought to determine if there is any relaxin-dependent change in RXFP1 proximity at the cell surface. Bioluminescence resonance energy transfer (BRET) between recombinantly tagged receptors is often used in GPCR proximity studies. RXFP1 targets poorly to the cell surface when overexpressed in cell lines, with the majority of the receptor proteins sequestered within the cell. Thus, any relaxin-induced changes in RXFP1 proximity at the cell surface may be obscured by BRET signal originating from intracellular compartments. We therefore, utilized the newly developed split luciferase system called HiBiT to specifically label the extracellular terminus of cell surface RXFP1 receptors in combination with mCitrine-tagged receptors, using the GABAB heterodimer as a positive control. This demonstrated that the BRET signal detected from RXFP1-RXFP1 proximity at the cell surface does not appear to be due to stable physical interactions. The fact that there is also no relaxin-mediated change in RXFP1-RXFP1 proximity at the cell surface further supports these conclusions. This work provides a basis by which cell surface GPCR proximity and expression levels can be specifically studied using a facile and homogeneous labeling technique such as HiBiT.
Collapse
Affiliation(s)
- Bradley L. Hoare
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Shoni Bruell
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Daniel J. Scott
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Ross A. D. Bathgate
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
9
|
Smith TH, Li JG, Dores MR, Trejo J. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin. J Biol Chem 2017; 292:13867-13878. [PMID: 28652403 DOI: 10.1074/jbc.m117.782359] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation.
Collapse
Affiliation(s)
- Thomas H Smith
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| | - Julia G Li
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| | - Michael R Dores
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and.,the Department of Biology, Hofstra University, Hempstead, New York 11549
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| |
Collapse
|
10
|
BRET evidence that β2 adrenergic receptors do not oligomerize in cells. Sci Rep 2015; 5:10166. [PMID: 25955971 PMCID: PMC4424835 DOI: 10.1038/srep10166] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/01/2015] [Indexed: 11/29/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is often used to study association of membrane proteins, and in particular oligomerization of G protein-coupled receptors (GPCRs). Oligomerization of class A GPCRs is controversial, in part because the methods used to study this question are not completely understood. Here we reconsider oligomerization of the class A β2 adrenergic receptor (β2AR), and reevaluate BRET titration as a method to study membrane protein association. Using inducible expression of the energy acceptor at multiple levels of donor expression we find that BRET between β2AR protomers is directly proportional to the density of the acceptor up to ~3,000 acceptors μm−2, and does not depend on the density of the donor or on the acceptor:donor (A:D) stoichiometry. In contrast, BRET between tightly-associating control proteins does not depend on the density of the acceptor, but does depend on the density of the donor and on the A:D ratio. We also find that the standard frameworks used to interpret BRET titration experiments rely on simplifying assumptions that are frequently invalid. These results suggest that β2ARs do not oligomerize in cells, and demonstrate a reliable method of assessing membrane protein association with BRET.
Collapse
|
11
|
Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci U S A 2014; 111:E5363-72. [PMID: 25468967 DOI: 10.1073/pnas.1417037111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.
Collapse
|
12
|
Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/7355_2014_77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Szalai B, Hoffmann P, Prokop S, Erdélyi L, Várnai P, Hunyady L. Improved methodical approach for quantitative BRET analysis of G Protein Coupled Receptor dimerization. PLoS One 2014; 9:e109503. [PMID: 25329164 PMCID: PMC4201472 DOI: 10.1371/journal.pone.0109503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/11/2014] [Indexed: 01/22/2023] Open
Abstract
G Protein Coupled Receptors (GPCR) can form dimers or higher ordered oligomers, the process of which can remarkably influence the physiological and pharmacological function of these receptors. Quantitative Bioluminescence Resonance Energy Transfer (qBRET) measurements are the gold standards to prove the direct physical interaction between the protomers of presumed GPCR dimers. For the correct interpretation of these experiments, the expression of the energy donor Renilla luciferase labeled receptor has to be maintained constant, which is hard to achieve in expression systems. To analyze the effects of non-constant donor expression on qBRET curves, we performed Monte Carlo simulations. Our results show that the decrease of donor expression can lead to saturation qBRET curves even if the interaction between donor and acceptor labeled receptors is non-specific leading to false interpretation of the dimerization state. We suggest here a new approach to the analysis of qBRET data, when the BRET ratio is plotted as a function of the acceptor labeled receptor expression at various donor receptor expression levels. With this method, we were able to distinguish between dimerization and non-specific interaction when the results of classical qBRET experiments were ambiguous. The simulation results were confirmed experimentally using rapamycin inducible heterodimerization system. We used this new method to investigate the dimerization of various GPCRs, and our data have confirmed the homodimerization of V2 vasopressin and CaSR calcium sensing receptors, whereas our data argue against the heterodimerization of these receptors with other studied GPCRs, including type I and II angiotensin, β2 adrenergic and CB1 cannabinoid receptors.
Collapse
Affiliation(s)
- Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Hoffmann
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Erdélyi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
- * E-mail:
| |
Collapse
|
14
|
Stephens B, Handel TM. Chemokine receptor oligomerization and allostery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 115:375-420. [PMID: 23415099 DOI: 10.1016/b978-0-12-394587-7.00009-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oligomerization of chemokine receptors has been reported to influence many aspects of receptor function through allosteric communication between receptor protomers. Allosteric interactions within chemokine receptor hetero-oligomers have been shown to cause negative cooperativity in the binding of chemokines and to inhibit receptor activation in the case of some receptor pairs. Other receptor pairs can cause enhanced signaling and even activate entirely new, hetero-oligomer-specific signaling complexes and responses downstream of receptor activation. Many mechanisms contribute to these effects including direct allosteric coupling between the receptors, G protein-mediated allostery, G protein stealing, ligand sequestration, and recruitment of new intracellular proteins by exposing unique binding interfaces on the oligomerized receptors. These effects present both challenges as well as exciting opportunities for drug discovery. One of the most difficult challenges will involve determining if and when hetero-oligomers versus homomeric receptors are involved in specific disease states.
Collapse
Affiliation(s)
- Bryan Stephens
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|