1
|
Li J, Li H, Cai S, Bai S, Cai H, Zhang X. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther 2021; 12:289. [PMID: 34001228 PMCID: PMC8127190 DOI: 10.1186/s13287-021-02305-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies demonstrated that autologous mitochondria derived from bone marrow mesenchymal stem cells (BMSCs) might be valuable in the treatment of spinal cord injury (SCI). However, the mechanisms of mitochondrial transfer from BMSCs to injured neurons are not fully understood. Methods We modified BMSCs by CD157, a cell surface molecule as a potential regulator mitochondria transfer, then transplanted to SCI rats and co-cultured with OGD injured VSC4.1 motor neuron. We detected extracellular mitochondrial particles derived from BMSCs by transmission electron microscope and measured the CD157/cyclic ADP-ribose signaling pathway-related protein expression by immunohistochemistry and Western blotting assay. The CD157 ADPR-cyclase activity and Fluo-4 AM was used to detect the Ca2+ signal. All data were expressed as mean ± SEM. Statistical analysis was analyzed by GraphPad Prism 6 software. Unpaired t-test was used for the analysis of two groups. Multiple comparisons were evaluated by one-way ANOVA or two-way ANOVA. Results CD157 on BMSCs was upregulated when co-cultured with injured VSC4.1 motor neurons. Upregulation of CD157 on BMSCs could raise the transfer extracellular mitochondria particles to VSC4.1 motor neurons, gradually regenerate the axon of VSC4.1 motor neuron and reduce the cell apoptosis. Transplantation of CD157-modified BMSCs at the injured sites could significantly improve the functional recovery, axon regeneration, and neuron apoptosis in SCI rats. The level of Ca2+ in CD157-modified BMSCs dramatically increased when objected to high concentration cADPR, ATP content, and MMP of BMSCs also increased. Conclusion The present results suggested that CD157 can regulate the production and transfer of BMSC-derived extracellular mitochondrial particles, enriching the mechanism of the extracellular mitochondrial transfer in BMSCs transplantation and providing a novel strategy to improve the stem cell treatment on SCI.
Collapse
Affiliation(s)
- Jing Li
- Department of Anatomy, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Heyangzi Li
- Department of Anatomy, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Simin Cai
- Department of Anatomy, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shi Bai
- Department of Anatomy, Taizhou University; School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Huabo Cai
- Department of Emergency Medicine, Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoming Zhang
- Department of Anatomy, School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Department of Emergency Medicine, Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Graeff R, Guedes A, Quintana R, Wendt-Hornickle E, Baldo C, Walseth T, O’Grady S, Kannan M. Novel Pathway of Adenosine Generation in the Lungs from NAD +: Relevance to Allergic Airway Disease. Molecules 2020; 25:molecules25214966. [PMID: 33120985 PMCID: PMC7663290 DOI: 10.3390/molecules25214966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Adenosine and uric acid (UA) play a pivotal role in lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). In the present experiments, we measured adenosine synthesis from nicotinamide adenine dinucleotide (NAD+) in membranes prepared from wild type (WT) and CD38 knockout (CD38KO) mouse lungs, from cultured airway smooth muscle and epithelial cells, and in bronchoalveolar lavage fluid after airway challenge with epidemiologically relevant allergens. Adenosine was determined using an enzymatically coupled assay that produces ATP and is detected by luminescence. Uric acid was determined by ELISA. Exposure of cultured airway epithelial cells to Alternaria alternata extract caused significant nucleotide (NAD+ and ATP) release in the culture media. The addition of NAD+ to membranes prepared from WT mice resulted in faster generation of adenosine compared to membranes from CD38KO mice. Formation of adenosine from NAD+ affected UA and ATP concentrations, its main downstream molecules. Furthermore, NAD+ and adenosine concentrations in the bronchoalveolar lavage fluid decreased significantly following airway challenge with house-dust mite extract in WT but not in CD38KO mice. Thus, NAD+ is a significant source of adenosine and UA in the airways in mouse models of allergic airway disease, and the capacity for their generation from NAD+ is augmented by CD38, a major NADase with high affinity for NAD+. This novel non-canonical NAD+-adenosine-UA pathway that is triggered by allergens has not been previously described in the airways.
Collapse
Affiliation(s)
- Richard Graeff
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Alonso Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Ruth Quintana
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Erin Wendt-Hornickle
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Caroline Baldo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (A.G.); (R.Q.); (E.W.-H.); (C.B.)
| | - Timothy Walseth
- Department of Pharmacology, University of Minnesota Medical School, University of Minnesota, St. Paul, MN 55455, USA;
| | - Scott O’Grady
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Mathur Kannan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence:
| |
Collapse
|
3
|
Yu P, Liu Z, Yu X, Ye P, Liu H, Xue X, Yang L, Li Z, Wu Y, Fang C, Zhao YJ, Yang F, Luo JH, Jiang LH, Zhang L, Zhang L, Yang W. Direct Gating of the TRPM2 Channel by cADPR via Specific Interactions with the ADPR Binding Pocket. Cell Rep 2020; 27:3684-3695.e4. [PMID: 31216484 DOI: 10.1016/j.celrep.2019.05.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/05/2019] [Accepted: 05/18/2019] [Indexed: 12/29/2022] Open
Abstract
cADPR is a well-recognized signaling molecule by modulating the RyRs, but considerable debate exists regarding whether cADPR can bind to and gate the TRPM2 channel, which mediates oxidative stress signaling in diverse physiological and pathological processes. Here, we show that purified cADPR evoked TRPM2 channel currents in both whole-cell and cell-free single-channel recordings and specific binding of cADPR to the purified NUDT9-H domain of TRPM2 by surface plasmon resonance. Furthermore, by combining computational modeling with electrophysiological recordings, we show that the TRPM2 channels carrying point mutations at H1346, T1347, L1379, S1391, E1409, and L1484 possess distinct sensitivity profiles for ADPR and cADPR. These results clearly indicate cADPR is a bona fide activator at the TRPM2 channel and clearly delineate the structural basis for cADPR binding, which not only lead to a better understanding in the gating mechanism of TRPM2 channel but also shed light on a cADPR-induced RyRs-independent Ca2+ signaling mechanism.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Xiafei Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Peiwu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Huan Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Xiwen Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Lixin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Yang Wu
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Cheng Fang
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Yong Juan Zhao
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Fan Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian Hong Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Sino-UK Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Henan 453003, P.R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.
| |
Collapse
|
4
|
Boslett J, Reddy N, Alzarie YA, Zweier JL. Inhibition of CD38 with the Thiazoloquin(az)olin(on)e 78c Protects the Heart against Postischemic Injury. J Pharmacol Exp Ther 2019; 369:55-64. [PMID: 30635470 PMCID: PMC6413770 DOI: 10.1124/jpet.118.254557] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Inhibition of and genetic deletion of the NAD(P)+ hydrolase [NAD(P)ase] CD38 have been shown to protect against ischemia/reperfusion (I/R) injury in rat and mouse hearts. CD38 has been shown to enhance salvage of NADP(H), which in turn prevents impairment of endothelial nitric oxide synthase function, a hallmark of endothelial dysfunction. Despite growing evidence for a role of CD38 in postischemic injury, until recently there had been a lack of potent CD38 inhibitors. Recently, a new class of thiazoloquin(az)olin(on)e compounds were identified as highly potent and specific CD38 inhibitors. Herein, we investigate the ability of one of these compounds, 78c, to inhibit CD38 and protect the heart in an ex vivo model of myocardial I/R injury. The potency and mechanism of CD38 inhibition by 78c was assessed in vitro using recombinant CD38. The dose-dependent tissue uptake of 78c in isolated mouse hearts was determined, and high tissue permeability of 78c was observed when delivered in perfusate. Treatment of hearts with 78c was protective against both postischemic endothelial and cardiac myocyte injury, with preserved nitric oxide synthase-dependent vasodilatory and contractile function, respectively. Myocardial infarction was also significantly decreased in 78c-treated hearts, with preserved levels of high-energy phosphates. Protective effects peaked at 10 μM treatment, and similar protection without toxicity was seen at 5-fold higher doses. Overall, 78c was shown to be a potent and biologically active CD38 inhibitor with favorable tissue uptake and marked protective effects against I/R injury with enhanced preservation of contractile function, coronary flow, and decreased infarction.
Collapse
Affiliation(s)
- James Boslett
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Nikhil Reddy
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Yasmin A Alzarie
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Boslett J, Helal M, Chini E, Zweier JL. Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides. J Mol Cell Cardiol 2018; 118:81-94. [PMID: 29476764 PMCID: PMC6699759 DOI: 10.1016/j.yjmcc.2018.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Following the onset of ischemia/reperfusion (I/R), CD38 activation occurs and is associated with depletion of NAD(P)(H) in the heart as well as myocardial injury and endothelial dysfunction. Studies with pharmacological inhibitors suggest that the NADP+-hydrolyzing ability of CD38 can deplete the NAD(P)(H) pools. However, there is a need for more specific studies on the importance of CD38 and its role in the process of endothelial dysfunction and myocardial injury in the post-ischemic heart. Therefore, experiments were performed in hearts of mice with global gene knockout of CD38. Isolated perfused CD38-/- and wild type (WT) mouse hearts were studied to determine the link between CD38 activation, the levels of NADP(H), endothelial dysfunction, and myocardial injury after I/R. Genetic deletion of CD38 preserves the myocardial and endothelial NADP(H) pools compared to WT. Whole heart BH4 levels in CD38-/- hearts were also preserved. Post-ischemic levels of cGMP were greatly depleted in WT hearts, but preserved to near baseline levels in CD38-/- hearts. The preservation of these metabolite pools in CD38-/- hearts was accompanied by near full recovery of NOS-dependent coronary flow, while in WT hearts, severe impairment of endothelial function and NOS uncoupling occurred with decreased NO and enhanced superoxide generation. CD38-/- hearts also exhibited marked protection against I/R with preserved glutathione levels, increased recovery of left ventricular contractile function, decreased myocyte enzyme release, and decreased infarct size. Thus, CD38 activation causes post-ischemic depletion of NADP(H) within the heart, with severe depletion from the endothelium, resulting in endothelial dysfunction and myocardial injury.
Collapse
Affiliation(s)
- James Boslett
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Moustafa Helal
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jay L Zweier
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Boslett J, Hemann C, Christofi FL, Zweier JL. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion. Am J Physiol Cell Physiol 2017; 314:C297-C309. [PMID: 29187364 DOI: 10.1152/ajpcell.00139.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NAD(P)+-hydrolyzing enzyme CD38 is activated in the heart during the process of ischemia and reperfusion, triggering NAD(P)(H) depletion. However, the presence and role of CD38 in the major cell types of the heart are unknown. Therefore, we characterize the presence and function of CD38 in cardiac myocytes, endothelial cells, and fibroblasts. To comprehensively evaluate CD38 in these cells, we measured gene transcription via mRNA, as well as protein expression and enzymatic activity. Endothelial cells strongly expressed CD38, while only low expression was present in cardiac myocytes with intermediate levels in fibroblasts. In view of this high level expression in endothelial cells and the proposed role of CD38 in the pathogenesis of endothelial dysfunction, endothelial cells were subjected to hypoxia-reoxygenation to characterize the effect of this stress on CD38 expression and activity. An activity-based CD38 imaging method and CD38 activity assays were used to characterize CD38 activity in normoxic and hypoxic-reoxygenated endothelial cells, with marked CD38 activation seen following hypoxia-reoxygenation. To test the impact of hypoxia-reoxygenation-induced CD38 activation on endothelial cells, NAD(P)(H) levels and endothelial nitric oxide synthase (eNOS)-derived NO production were measured. Marked NADP(H) depletion with loss of NO and increase in superoxide production occurred following hypoxia-reoxygenation that was prevented by CD38 inhibition or knockdown. Thus, endothelial cells have high expression of CD38 which is activated by hypoxia-reoxygenation triggering CD38-mediated NADP(H) depletion with loss of eNOS-mediated NO generation and increased eNOS uncoupling. This demonstrates the importance of CD38 in the endothelium and explains the basis by which CD38 triggers post-ischemic endothelial dysfunction.
Collapse
Affiliation(s)
- James Boslett
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University , Columbus, Ohio
| | - Craig Hemann
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University , Columbus, Ohio
| | - Fedias L Christofi
- Department of Anesthesiology, Wexner Medical Center at Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University , Columbus, Ohio
| |
Collapse
|
7
|
Guedes AGP, Jude JA, Paulin J, Rivero-Nava L, Kita H, Lund FE, Kannan MS. Airway responsiveness in CD38-deficient mice in allergic airway disease: studies with bone marrow chimeras. Am J Physiol Lung Cell Mol Physiol 2015; 308:L485-93. [PMID: 25575514 DOI: 10.1152/ajplung.00227.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD38 is a cell-surface protein involved in calcium signaling and contractility of airway smooth muscle. It has a role in normal airway responsiveness and in airway hyperresponsiveness (AHR) developed following airway exposure to IL-13 and TNF-α but appears not to be critical to airway inflammation in response to the cytokines. CD38 is also involved in T cell-mediated immune response to protein antigens. In this study, we assessed the contribution of CD38 to AHR and inflammation to two distinct allergens, ovalbumin and the epidemiologically relevant environmental fungus Alternaria. We also generated bone marrow chimeras to assess whether Cd38(+/+) inflammatory cells would restore AHR in the CD38-deficient (Cd38(-/-)) hosts following ovalbumin challenge. Results show that wild-type (WT) mice develop greater AHR to inhaled methacholine than Cd38(-/-) mice following challenge with either allergen, with comparable airway inflammation. Reciprocal bone marrow transfers did not change the native airway phenotypic differences between WT and Cd38(-/-) mice, indicating that the lower airway reactivity of Cd38(-/-) mice stems from Cd38(-/-) lung parenchymal cells. Following bone marrow transfer from either source and ovalbumin challenge, the phenotype of Cd38(-/-) hosts was partially reversed, whereas the airway phenotype of the WT hosts was preserved. Airway inflammation was similar in Cd38(-/-) and WT chimeras. These results indicate that loss of CD38 on hematopoietic cells is not sufficient to prevent AHR and that the magnitude of airway inflammation is not the predominant underlying determinant of AHR in mice.
Collapse
Affiliation(s)
- Alonso G P Guedes
- Department of Surgical and Radiological Sciences, University of California, Davis, California
| | - Joseph A Jude
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jaime Paulin
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota
| | | | - Hirohito Kita
- Departments of Immunology and Medicine, Mayo Clinic, Rochester, Minnesota
| | - Frances E Lund
- Trudeau Institute, Saranac Lake, New York; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mathur S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
8
|
Lopatina O, Yoshihara T, Nishimura T, Zhong J, Akther S, Fakhrul AAKM, Liang M, Higashida C, Sumi K, Furuhara K, Inahata Y, Huang JJ, Koizumi K, Yokoyama S, Tsuji T, Petugina Y, Sumarokov A, Salmina AB, Hashida K, Kitao Y, Hori O, Asano M, Kitamura Y, Kozaka T, Shiba K, Zhong F, Xie MJ, Sato M, Ishihara K, Higashida H. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson's disease. Front Behav Neurosci 2014; 8:133. [PMID: 24795584 PMCID: PMC4001052 DOI: 10.3389/fnbeh.2014.00133] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/02/2014] [Indexed: 11/13/2022] Open
Abstract
CD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositol-anchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinson's disease (PD), little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157 (-/-)) male mice under less aging-related effects on behaviors. CD157 (-/-) mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity in the amygdala was less evident in CD157 (-/-) mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD.
Collapse
Affiliation(s)
- Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Core Research for Evolutional Science and Technology Tokyo, Japan ; Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Toru Yoshihara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Advanced Science Research Center, Kanazawa University Kanazawa, Japan
| | - Tomoko Nishimura
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Shirin Akther
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Azam A K M Fakhrul
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Chiharu Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Core Research for Evolutional Science and Technology Tokyo, Japan
| | - Kohei Sumi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Yuki Inahata
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Jian-Jung Huang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Keita Koizumi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Takahiro Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan
| | - Yulia Petugina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Andrei Sumarokov
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Koji Hashida
- Core Research for Evolutional Science and Technology Tokyo, Japan ; Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences Kanazawa, Japan
| | - Yasuko Kitao
- Core Research for Evolutional Science and Technology Tokyo, Japan ; Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences Kanazawa, Japan
| | - Osamu Hori
- Core Research for Evolutional Science and Technology Tokyo, Japan ; Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences Kanazawa, Japan
| | - Masahide Asano
- Advanced Science Research Center, Kanazawa University Kanazawa, Japan
| | - Yoji Kitamura
- Advanced Science Research Center, Kanazawa University Kanazawa, Japan
| | - Takashi Kozaka
- Advanced Science Research Center, Kanazawa University Kanazawa, Japan
| | - Kazuhiro Shiba
- Advanced Science Research Center, Kanazawa University Kanazawa, Japan
| | - Fangfang Zhong
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Min-Jue Xie
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Makoto Sato
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui Fukui, Japan ; Research Center for Child Mental Development, University of Fukui Fukui, Japan
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School Kurashiki, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University Kanazawa, Japan ; Core Research for Evolutional Science and Technology Tokyo, Japan ; Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| |
Collapse
|