1
|
Assessment of Parasite-Microglia Interactions In Vitro. Methods Mol Biol 2019. [PMID: 31392683 DOI: 10.1007/978-1-4939-9658-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An extensive number of parasites are able to invade the central nervous system (CNS) and cause a plethora of pathologies. Microglia, the resident macrophages of nervous tissue, are responsible for the protection against intruders, and therefore, they are an important line of defense against parasites. The phagocytosis is one of the weapons in the microglia's arsenal to fight against parasites. Several prior studies of microglia-parasite interactions and phagocytosis have been performed using microscopic techniques. As this methodology allows only a limited number of cells to be analyzed, additional approaches are required to provide a more complete picture of how microglia interact with these pathogens. Here, we describe a protocol based on flow cytometry to analyze single-celled parasites/microglia interactions in thousands of events in an accurate and reliable way. We use Trypanosoma brucei as a model organism, as it is a well-known parasite causing primary meningoencephalitis. However, the interaction/phagocytosis assay can be applied to other single-celled parasites as well.
Collapse
|
2
|
Kovářová J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog 2018; 14:e1007475. [PMID: 30589893 PMCID: PMC6307712 DOI: 10.1371/journal.ppat.1007475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Bloodstream form African trypanosomes are thought to rely exclusively upon glycolysis, using glucose as a substrate, for ATP production. Indeed, the pathway has long been considered a potential therapeutic target to tackle the devastating and neglected tropical diseases caused by these parasites. However, plasma membrane glucose and glycerol transporters are both expressed by trypanosomes and these parasites can infiltrate tissues that contain glycerol. Here, we show that bloodstream form trypanosomes can use glycerol for gluconeogenesis and for ATP production, particularly when deprived of glucose following hexose transporter depletion. We demonstrate that Trypanosoma brucei hexose transporters 1 and 2 (THT1 and THT2) are localized to the plasma membrane and that knockdown of THT1 expression leads to a growth defect that is more severe when THT2 is also knocked down. These data are consistent with THT1 and THT2 being the primary routes of glucose supply for the production of ATP by glycolysis. However, supplementation of the growth medium with glycerol substantially rescued the growth defect caused by THT1 and THT2 knockdown. Metabolomic analyses with heavy-isotope labelled glycerol demonstrated that trypanosomes take up glycerol and use it to synthesize intermediates of gluconeogenesis, including fructose 1,6-bisphosphate and hexose 6-phosphates, which feed the pentose phosphate pathway and variant surface glycoprotein biosynthesis. We used Cas9-mediated gene knockout to demonstrate a gluconeogenesis-specific, but fructose-1,6-bisphosphatase (Tb927.9.8720)-independent activity, converting fructose 1,6-bisphosphate into fructose 6-phosphate. In addition, we observed increased flux through the tricarboxylic acid cycle and the succinate shunt. Thus, contrary to prior thinking, gluconeogenesis can operate in bloodstream form T. brucei. This pathway, using glycerol as a physiological substrate, may be required in mammalian host tissues.
Collapse
Affiliation(s)
- Julie Kovářová
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Rupa Nagar
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Joana Faria
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Rodrigues JA, Acosta-Serrano A, Aebi M, Ferguson MAJ, Routier FH, Schiller I, Soares S, Spencer D, Titz A, Wilson IBH, Izquierdo L. Parasite Glycobiology: A Bittersweet Symphony. PLoS Pathog 2015; 11:e1005169. [PMID: 26562305 PMCID: PMC4642930 DOI: 10.1371/journal.ppat.1005169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Joao A. Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (JAR); (LI)
| | - Alvaro Acosta-Serrano
- Department of Parasitology & Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | | | | | - Daniel Spencer
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | - Luis Izquierdo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- * E-mail: (JAR); (LI)
| |
Collapse
|
5
|
Izquierdo L, Acosta-Serrano A, Mehlert A, Ferguson MA. Identification of a glycosylphosphatidylinositol anchor-modifying β1-3 galactosyltransferase in Trypanosoma brucei. Glycobiology 2014; 25:438-47. [PMID: 25467966 PMCID: PMC4339879 DOI: 10.1093/glycob/cwu131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma brucei is the causative agent of human African sleeping sickness and the cattle disease nagana. Trypanosoma brucei is dependent on glycoproteins for its survival and infectivity throughout its life cycle. Here we report the functional characterization of TbGT3, a glycosyltransferase expressed in the bloodstream and procyclic form of the parasite. Bloodstream and procyclic form TbGT3 conditional null mutants were created and both exhibited normal growth under permissive and nonpermissive conditions. Under nonpermissive conditions, the normal glycosylation of the major glycoprotein of bloodstream form T. brucei, the variant surface glycoprotein and the absence of major alterations in lectin binding to other glycoproteins suggested that the major function of TbGT3 occurs in the procyclic form of the parasite. Consistent with this, the major surface glycoprotein of the procyclic form, procyclin, exhibited a marked reduction in molecular weight due to changes in glycosylphosphatidylinositol (GPI) anchor side chains. Structural analysis of the mutant procyclin GPI anchors indicated that TbGT3 encodes a UDP-Gal: β-GlcNAc-GPI β1-3 Gal transferase. Despite the alterations in GPI anchor side chains, TbGT3 conditional null mutants remained infectious to tsetse flies under nonpermissive conditions.
Collapse
Affiliation(s)
- Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain
| | - Alvaro Acosta-Serrano
- Department of Parasitology Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Mehlert
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Aj Ferguson
- Division of Biological Chemistry and Drug Discovery, The College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Damerow M, Rodrigues JA, Wu D, Güther MLS, Mehlert A, Ferguson MAJ. Identification and functional characterization of a highly divergent N-acetylglucosaminyltransferase I (TbGnTI) in Trypanosoma brucei. J Biol Chem 2014; 289:9328-39. [PMID: 24550396 PMCID: PMC3979372 DOI: 10.1074/jbc.m114.555029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known β1–4-galactosyltransferase or β1–2- or β1–6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian β1–3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-d-mannoside β1–2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical “pseudohybrid” glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man3GlcNAc2, but not to triantennary Man5GlcNAc2, which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the β3-glycosyltransferase family to catalyze β1–2 linkages.
Collapse
Affiliation(s)
- Manuela Damerow
- From the Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom and
| | | | | | | | | | | |
Collapse
|