1
|
Fullwood RA, Low GM, Chase EP, Grasley M, Beal SS, McCrary IM, Daniels CW, Ingersoll K, Berges BK. The Kaposi's sarcoma-associated herpesvirus viral interleukin 6 gene affects metastasis and expression of B cell markers in a murine xenograft model. PLoS One 2018; 13:e0204947. [PMID: 30265712 PMCID: PMC6161906 DOI: 10.1371/journal.pone.0204947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/16/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus in humans, primarily affecting AIDS patients. KSHV causes a range of cancers including Kaposi’s sarcoma, pleural effusion lymphoma and multicentric Castleman’s disease. Current methods available for treating these cancers are relatively ineffective, and new targets for therapy are needed. The KSHV viral homolog of interleukin-6 gene (vIL-6) may play a significant role in tumor development and may serve as a new anti-cancer target, but its role in tumor formation is only partially understood. Here, a novel animal model was used to study how vIL-6 affects tumor development. Highly immune-deficient Rag2-/-γc-/- mice were transplanted with an immortalized human B cell line (BJAB) harboring either wild-type (WT) KSHV or a mutant strain lacking vIL-6 ΔvIL-6). Solid tumors developed and total tumor mass and the number of tumors were characterized. The vIL-6 gene had no significant impact on tumor mass, but significantly more tumors were detected when vIL-6 was present. Significant differences in expression of B cell markers in cells from extracted tumors were detected based upon the presence of vIL-6. B cell markers in tumor cells were also compared to the same cell type in culture, prior to xenotransplantation; B cell markers were mostly downregulated during tumor formation and these changes did not differ based upon the presence of vIL-6. The only marker that significantly increased in expression during tumor development was CD30. Tumor blood vessels were quantified to determine if more angiogenesis occurred with vIL-6-expressing virus, but there was no significant difference. These data indicate that vIL-6 plays a role in KSHV tumor formation in B cells in vivo. Further investigation into how vIL-6 manipulates CD30 expression may shed insight into KSHV oncogenesis, and may identify how vIL-6 can be targeted.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Neoplastic
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Heterografts
- Humans
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Mice
- Mice, Knockout
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- Neoplasms, Plasma Cell/genetics
- Neoplasms, Plasma Cell/metabolism
- Neoplasms, Plasma Cell/pathology
- Neoplasms, Plasma Cell/virology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- R. Amy Fullwood
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Gregory M. Low
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Emily P. Chase
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Meagan Grasley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Soren S. Beal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Ian M. McCrary
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Christian W. Daniels
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kayleigh Ingersoll
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| |
Collapse
|
2
|
Lieberman R, Pan J, Zhang Q, You M. Rad52 deficiency decreases development of lung squamous cell carcinomas by enhancing immuno-surveillance. Oncotarget 2018; 8:34032-34044. [PMID: 28415565 PMCID: PMC5470949 DOI: 10.18632/oncotarget.16371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023] Open
Abstract
RAD52 is involved in homologous recombination and DNA repair. This study focuses on lung cancer progression and how the DNA repair gene, Rad52, enables tumor cells to have sufficient genome integrity, i.e., the ability to repair lethal DNA damage, to avoid cell death. In this report, we analyze the phenotypic differences between wild type and Rad52-/- in inhibition of tumor phenotypes including cell growth, viability, cytolysis, and immune profiling. We demonstrated that loss of Rad52 not only increases the death of cells undergoing carcinogen-induced transformation in vivo, but that Rad52 loss also augments in vivo antitumor activity through an enhanced capacity for direct killing of LLC tumor cells by stimulated Rad52-/- NK and CD8+ T cells. We hypothesize that upon DNA damage, wild type cells attempt to repair DNA lesions, but those cells that survive will continue to divide with damage and a high likelihood of progressing to malignancy. Loss of Rad52, however, appears to increase genomic instability beyond a manageable threshold, acceding the damaged cells to death before they are able to become tumor cells. Our results suggest a key role for the complex interplay between the DNA damage response and host immunity in determining risk for Squamous Cell Lung Carcinoma.
Collapse
Affiliation(s)
- Rachel Lieberman
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jing Pan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qi Zhang
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ming You
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Abstract
During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.
Collapse
|
4
|
Tanner A, Hallam SJ, Nielsen SJ, Cuadra GI, Berges BK. Development of human B cells and antibodies following human hematopoietic stem cell transplantation to Rag2(-/-)γc(-/-) mice. Transpl Immunol 2015; 32:144-50. [PMID: 25843523 DOI: 10.1016/j.trim.2015.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/19/2022]
Abstract
Humanized mice represent a valuable model system to study the development and functionality of the human immune system. In the RAG-hu mouse model highly immunodeficient Rag2(-/-)γc(-/-) mice are transplanted with human CD34(+) hematopoietic stem cells, resulting in human hematopoiesis and a predominant production of B and T lymphocytes. Human adaptive immune responses have been detected towards a variety of antigens in humanized mice but both cellular and humoral immune responses tend to be weak and sporadically detected. The underlying mechanisms for inconsistent responses are poorly understood. Here, we analyzed the kinetics of human B cell development and antibody production in RAG-hu mice to better understand the lack of effective antibody responses. We found that T cell levels in blood did not significantly change from 8 to 28 weeks post-engraftment, while B cells reached a peak at 14 weeks. Concentrations of 3 antibody classes (IgM, IgG, IgA) were found to be at levels about 0.1% or less of normal human levels, but human antibodies were still detected up to 32 weeks after engraftment. Human IgM was detected in 92.5% of animals while IgG and IgA were detected in about half of animals. We performed flow cytometric analysis of human B cells in bone marrow, spleen, and blood to examine the presence of precursor B cells, immature B cells, naïve B cells, and plasma B cells. We detected high levels of surface IgM(+) B cells (immature and naïve B cells) and low levels of plasma B cells in these organs, suggesting that B cells do not mature properly in this model. Low levels of human T cells in the spleen were observed, and we suggest that the lack of T cell help may explain poor B cell development and antibody responses. We conclude that human B cells that develop in humanized mice do not receive the signals necessary to undergo class-switching or to secrete antibody effectively, and we discuss strategies to potentially overcome these barriers.
Collapse
Affiliation(s)
- Anne Tanner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Steven J Hallam
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stanton J Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - German I Cuadra
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
5
|
Martelli AM, Lonetti A, Buontempo F, Ricci F, Tazzari PL, Evangelisti C, Bressanin D, Cappellini A, Orsini E, Chiarini F. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul 2014; 56:6-21. [PMID: 24819383 DOI: 10.1016/j.jbior.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Leukemia initiating cells (LICs) represent a reservoir that is believed to drive relapse and resistance to chemotherapy in blood malignant disorders. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases and is prone to early relapse. Although the prognosis of T-ALL has improved especially in children due to the use of new intensified treatment protocols, the outcome of relapsed T-ALL cases is still poor. Putative LICs have been identified also in T-ALL. LICs are mostly quiescent and for this reason highly resistant to chemotherapy. Therefore, they evade treatment and give rise to disease relapse. At present great interest surrounds the development of targeted therapies against signaling networks aberrantly activated in LICs and important for their survival and drug-resistance. Both the Notch1 pathway and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) network are involved in T-ALL LIC survival and drug-resistance and could be targeted by small molecules. Thus, Notch1 and PI3K/Akt/mTOR inhibitors are currently being developed for clinical use either as single agents or in combination with conventional chemotherapy for T-ALL patient treatment. In this review, we summarize the existing knowledge of the relevance of Notch1 and PI3K/Akt/mTOR signaling in T-ALL LICs and we examine the rationale for targeting these key signal transduction networks by means of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, 03043 Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|