1
|
Jadhav SR, Shah RM, Karpe AV, Beale DJ, Kouremenos KA, Palombo EA. Identifying Putative Biomarkers of Foodborne Pathogens Using a Metabolomic Approach. Methods Mol Biol 2025; 2852:255-272. [PMID: 39235749 DOI: 10.1007/978-1-0716-4100-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.
Collapse
Affiliation(s)
- Snehal R Jadhav
- Consumer Analytical Safety Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia.
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | | | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Hillyer KE, Beale DJ, Shima JS. Artificial light at night interacts with predatory threat to alter reef fish metabolite profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144482. [PMID: 33477042 DOI: 10.1016/j.scitotenv.2020.144482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Light cycles and predatory threat define activity patterns (e.g. feeding/sleeping, activity/rest) in most diurnal fish species. Artificial light at night (ALAN) may disrupt natural cycles and biochemical processes, a mismatch which can eventually reduce condition and fitness. We evaluate the separate and joint effects of ALAN and predator threat on metabolism within brain, liver and muscle tissue of a common, wild caught damselfish, blue green chromis (Chromis viridis). The effects of ALAN varied according to tissue type and predator exposure. In all tissues we observed changes in metabolic pathways associated with increased activity under continuous light (despite provision of shelter), specifically those associated with energy metabolism, cell signalling, responses to oxidative stress and markers of cellular damage. In both the brain and liver tissues, predator threat served to moderate the influence of ALAN on metabolic change, likely due to increased sheltering behaviour. However, no interaction of predator threat with ALAN was observed in metabolism of the muscle tissue. Our results highlight complex sub-acute effects of ALAN exposure on tissue specific and whole organism energy metabolism. Collectively these effects indicate that ALAN has significant scope to reduce fitness of coastal fishes and potentially threaten ecosystem services, but that these changes are highly complex and may be altered by biotic drivers of activity.
Collapse
Affiliation(s)
- Katie E Hillyer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand; Commonwealth Scientific and Industrial Research Organisation (CSIRO), GPO Box 2583, Brisbane, 4001, Australia.
| | - David J Beale
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), GPO Box 2583, Brisbane, 4001, Australia
| | - Jeffrey S Shima
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
3
|
Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, Pijpers L, Michie J, Brown KK, Knight DA, Sutton V, Beavis PA, Voskoboinik I, Darcy PK, Silke J, Trapani JA, Johnstone RW, Oliaro J. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol 2018; 3:3/23/eaar3451. [DOI: 10.1126/sciimmunol.aar3451] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
|
4
|
Jayasinghe NS, Mendis H, Roessner U, Dias DA. Quantification of Sugars and Organic Acids in Biological Matrices Using GC-QqQ-MS. Methods Mol Biol 2018; 1778:207-223. [PMID: 29761441 DOI: 10.1007/978-1-4939-7819-9_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gas chromatography coupled with triple quadrupole mass spectrometry (GC-QqQ-MS) can be used to accurately quantify endogenous small molecules extracted from biological samples such as plants and human fluids including sera and urine. In order to quantify primary metabolites typically from central carbon metabolism such as sugars from glycolysis and the pentose phosphate pathway; and organic acids involved in the tricarboxylic acid (TCA) cycle; polar endogenous metabolites must be extracted from the samples of interest, chemically derivatized and quantified against a linear calibration curve to a corresponding authentic standard. This chapter describes how to quantify a combination of 48 primary metabolites belonging to classes of sugars, sugar alcohols, sugar acids, sugar phosphates, and organic acids using a robust, optimized, multiple reaction monitoring (MRM)-based GC-QqQ-MS method.
Collapse
Affiliation(s)
- Nirupama Samanmalie Jayasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
- Racing Analytical Services Ltd., Flemington, VIC, Australia.
| | - Himasha Mendis
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel Anthony Dias
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Binder NK, Sheedy JR, Hannan NJ, Gardner DK. Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model. Mol Hum Reprod 2015; 21:424-34. [PMID: 25731709 DOI: 10.1093/molehr/gav010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/25/2015] [Indexed: 01/08/2023] Open
Abstract
The rate of obesity among men of reproductive age has tripled in the last three decades. Previously, we demonstrated that paternal obesity resulted in impaired preimplantation developmental kinetics, compromised post-compaction metabolism and decreased blastocyst cell number when embryos were generated in vivo. Subsequently, using in vitro fertilization we found embryos of obese males to have altered metabolism before compaction, reduced inner cell mass cell number and retarded fetal development--the difference between these two studies being the method of embryo generation and the presence or absence of seminal plasma, respectively. Here, we hypothesize that both sperm and seminal plasma are affected by obesity, compromising embryogenesis and pregnancy health in a cumulative manner. Epididymal sperm and seminal vesicle fluid were collected from normal and obese C57BL/6 mice. RNA and DNA were extracted from spermatozoa for qPCR and global methylation analysis, respectively. Proteomic (Luminex) and metabolomic (GC-MS) techniques were employed to analyse the composition of seminal vesicle fluid. Nuclear encoded cytochrome c oxidase subunit IV isoform 1 (Cox4i1) of the terminal enzyme in the mitochondrial respiratory chain demonstrated significantly increased RNA levels in the sperm of obese males (P< 0.05). Quantitative seminal plasma analysis identified significant changes in levels of the hormones insulin, leptin and estradiol between normal and obese males (P < 0.05). Further, the metabolite composition of seminal vesicle fluid was significantly affected by obesity. Consequently, this study has determined that obesity affects both sperm and seminal plasma composition. The interaction between sperm and seminal plasma warrants further analysis.
Collapse
Affiliation(s)
- Natalie K Binder
- Department of Zoology, University of Melbourne, Parkville 3010, VIC, Australia Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg 3084, VIC, Australia
| | - John R Sheedy
- Department of Zoology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg 3084, VIC, Australia
| | - David K Gardner
- Department of Zoology, University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
6
|
Wen B, Zhu M. Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metab Rev 2015; 47:71-87. [DOI: 10.3109/03602532.2014.1001029] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|