1
|
Decoster L, Trova S, Zucca S, Bulk J, Gouveia A, Ternier G, Lhomme T, Legrand A, Gallet S, Boehm U, Wyatt A, Wahl V, Wartenberg P, Hrabovszky E, Rácz G, Luzzati F, Nato G, Fogli M, Peretto P, Schriever SC, Bernecker M, Pfluger PT, Steculorum SM, Bovetti S, Rasika S, Prevot V, Silva MSB, Giacobini P. A GnRH neuronal population in the olfactory bulb translates socially relevant odors into reproductive behavior in male mice. Nat Neurosci 2024; 27:1758-1773. [PMID: 39095587 DOI: 10.1038/s41593-024-01724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.
Collapse
Affiliation(s)
- Laurine Decoster
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
- Centro CMP3VdA, Istituto Italiano di Tecnologia (IIT), Aosta, Italy
| | - Stefano Zucca
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Janice Bulk
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
| | - Ayden Gouveia
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Tori Lhomme
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Amandine Legrand
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Sarah Gallet
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Marco Fogli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Miriam Bernecker
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Sowmyalakshmi Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Mauro S B Silva
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.
| |
Collapse
|
2
|
Vorhees CV, Williams MT, Hawkey AB, Levin ED. Translating Neurobehavioral Toxicity Across Species From Zebrafish to Rats to Humans: Implications for Risk Assessment. FRONTIERS IN TOXICOLOGY 2021; 3:629229. [PMID: 35295117 PMCID: PMC8915800 DOI: 10.3389/ftox.2021.629229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is a spectrum of approaches to neurotoxicological science from high-throughput in vitro cell-based assays, through a variety of experimental animal models to human epidemiological and clinical studies. Each level of analysis has its own advantages and limitations. Experimental animal models give essential information for neurobehavioral toxicology, providing cause-and-effect information regarding risks of neurobehavioral dysfunction caused by toxicant exposure. Human epidemiological and clinical studies give the closest information to characterizing human risk, but without randomized treatment of subjects to different toxicant doses can only give information about association between toxicant exposure and neurobehavioral impairment. In vitro methods give much needed high throughput for many chemicals and mixtures but cannot provide information about toxicant impacts on behavioral function. Crucial to the utility of experimental animal model studies is cross-species translation. This is vital for both risk assessment and mechanistic determination. Interspecies extrapolation is important to characterize from experimental animal models to humans and between different experimental animal models. This article reviews the literature concerning extrapolation of neurobehavioral toxicology from established rat models to humans and from zebrafish a newer experimental model to rats. The functions covered include locomotor activity, emotion, and cognition and the neurotoxicants covered include pesticides, metals, drugs of abuse, flame retardants and polycyclic aromatic hydrocarbons. With more complete understanding of the strengths and limitations of interspecies translation, we can better use animal models to protect humans from neurobehavioral toxicity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Andrew B. Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
3
|
Eckstein E, Pyrski M, Pinto S, Freichel M, Vennekens R, Zufall F. Cyclic regulation of Trpm4 expression in female vomeronasal neurons driven by ovarian sex hormones. Mol Cell Neurosci 2020; 105:103495. [PMID: 32298804 DOI: 10.1016/j.mcn.2020.103495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/13/2020] [Accepted: 04/11/2020] [Indexed: 01/29/2023] Open
Abstract
The vomeronasal organ (VNO), the sensory organ of the mammalian accessory olfactory system, mediates the activation of sexually dimorphic reproductive behavioral and endocrine responses in males and females. It is unclear how sexually dimorphic and state-dependent responses are generated by vomeronasal sensory neurons (VSNs). Here, we report the expression of the transient receptor potential (TRP) channel Trpm4, a Ca2+-activated monovalent cation channel, as a second TRP channel present in mouse VSNs, in addition to the diacylglycerol-sensitive Trpc2 channel. The expression of Trpm4 in the mouse VNO is sexually dimorphic and, in females, is tightly linked to their reproductive cycle. We show that Trpm4 protein expression is upregulated specifically during proestrus and estrus, when female mice are about to ovulate and become sexually active and receptive. The cyclic regulation of Trpm4 expression in female VSNs depends on ovarian sex hormones and is abolished by surgical removal of the ovaries (OVX). Trpm4 upregulation can be restored in OVX mice by systemic treatment with 17ß-estradiol, requires endogenous activity of aromatase enzyme, and is strongly reduced during late pregnancy. This cyclic regulation of Trpm4 offers a neural mechanism by which female mice could regulate the relative strength of sensory signals in their VSNs, depending on hormonal state. Trpm4 is likely to participate in sex-specific, estrous cycle-dependent and sex hormone-regulated functions of the VNO, and may serve as a previously unknown genetic substrate for dissecting mammalian sexually dimorphic cellular and behavioral responses.
Collapse
Affiliation(s)
- Eugenia Eckstein
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
4
|
Hellier V, Brock O, Candlish M, Desroziers E, Aoki M, Mayer C, Piet R, Herbison A, Colledge WH, Prévot V, Boehm U, Bakker J. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun 2018; 9:400. [PMID: 29374161 PMCID: PMC5786055 DOI: 10.1038/s41467-017-02797-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Sexual behavior is essential for the survival of many species. In female rodents, mate preference and copulatory behavior depend on pheromones and are synchronized with ovulation to ensure reproductive success. The neural circuits driving this orchestration in the brain have, however, remained elusive. Here, we demonstrate that neurons controlling ovulation in the mammalian brain are at the core of a branching neural circuit governing both mate preference and copulatory behavior. We show that male odors detected in the vomeronasal organ activate kisspeptin neurons in female mice. Classical kisspeptin/Kiss1R signaling subsequently triggers olfactory-driven mate preference. In contrast, copulatory behavior is elicited by kisspeptin neurons in a parallel circuit independent of Kiss1R involving nitric oxide signaling. Consistent with this, we find that kisspeptin neurons impinge onto nitric oxide-synthesizing neurons in the ventromedial hypothalamus. Our data establish kisspeptin neurons as a central regulatory hub orchestrating sexual behavior in the female mouse brain. Mate preference and copulatory behavior in female rodents are coordinated with the ovulation cycles of the animal. This study shows that hypothalamic kisspeptin neurons control both mate choice and copulation, and therefore, that sexual behavior and ovulation may be synchronized by the same neuropeptide.
Collapse
Affiliation(s)
- Vincent Hellier
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Olivier Brock
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium.,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Elodie Desroziers
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | | | - Richard Piet
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Allan Herbison
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - William Henry Colledge
- Reproductive Physiology Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Inserm U1172, F- 59000, Lille Cedex, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany.
| | - Julie Bakker
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium. .,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|