1
|
Gruenke P, Mayer MD, Aneja R, Schulze WJ, Song Z, Burke DH, Heng X, Lange MJ. A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components. ACS Infect Dis 2024; 10:2637-2655. [PMID: 39016538 PMCID: PMC11320578 DOI: 10.1021/acsinfecdis.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.
Collapse
Affiliation(s)
- Paige
R. Gruenke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Miles D. Mayer
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rachna Aneja
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - William J. Schulze
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - Zhenwei Song
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald H. Burke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Margaret J. Lange
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Gruenke PR, Mayer MD, Aneja R, Song Z, Burke DH, Heng X, Lange MJ. Differentiation SELEX approach identifies RNA aptamers with different specificities for HIV-1 capsid assembly forms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571135. [PMID: 38168417 PMCID: PMC10760009 DOI: 10.1101/2023.12.11.571135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers. Aptamer subsets with different specificities emerged from within a highly converged, pre-enriched aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for CA lattice or bound both CA lattice and CA hexamer. We further evaluated four representatives to reveal aptamer structural features required for binding, highlighting interesting features and challenges in aptamer structure determination. Importantly, our aptamers bind biologically relevant forms of CA and we demonstrate aptamer-mediated affinity purification of CA from cell lysates without virus or host modification. Thus, we have identified CA assembly form-specific aptamers that represent exciting new tools for the study of CA.
Collapse
|
3
|
Abstract
In recent years a wide variety of RNA molecules regulating fundamental cellular processes has been discovered. Therefore, RNA structure determination is experiencing a boost and many more RNA structures are likely to be determined in the years to come. The broader availability of experimentally determined RNA structures implies that molecular replacement (MR) will be used more and more frequently as a method for phasing future crystallographic structures. In this report we describe various aspects relative to RNA structure determination by MR. First, we describe how to select and create MR search models for nucleic acids. Second, we describe how to perform MR searches on RNA using available crystallographic software. Finally, we describe how to refine and interpret the successful MR solutions. These protocols are applicable to determine novel RNA structures as well as to establish structural-functional relationships on existing RNA structures.
Collapse
|
4
|
Zhao C, Anklin C, Greenbaum NL. Use of 19F NMR Methods to Probe Conformational Heterogeneity and Dynamics of Exchange in Functional RNA Molecules. Methods Enzymol 2014; 549:267-85. [DOI: 10.1016/b978-0-12-801122-5.00012-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|