1
|
Sun B, Zhang Y, Yu P, Dong L, Wang J, Xing N, Qu J, Gao L, Liu D, Zhang S, Xie C, Wu W, Pang Q, Li A. The stress-associated small heat shock protein affects stem cell proliferation, differentiation, and tissue-specific transcriptional networks during regeneration in Dugesia japonica. Biochem Biophys Res Commun 2025; 764:151824. [PMID: 40253908 DOI: 10.1016/j.bbrc.2025.151824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Small heat shock proteins (sHSPs) represent a highly conserved family of molecular chaperones primarily known for their roles in protein homeostasis and stress responses. However, their involvement in regulating stem cell dynamics and tissue regeneration remains insufficiently characterized, particularly in planarians, a model organism renowned for its extraordinary regenerative capacity. In planarians, regeneration is driven by pluripotent stem cells, referred to as neoblasts, which are the only proliferative cells responsible for tissue repair and homeostasis. In this study, we identified a novel sHSP, DjsHSP, in Dugesia japonica and investigated its functional role in regeneration. Using RNA interference (RNAi), we demonstrated that DjsHSP knockdown significantly delayed regeneration of the blastema, intestine, eyes, and neural tissue. Mechanistically, DjsHSP knockdown disrupted neoblasts dynamics, leading to abnormal proliferation and impaired differentiation. This was associated with altered expression of lineage-specific transcription factors critical for triploblastic tissue differentiation. Furthermore, the knockdown of DjsHSP downregulated key transcription factors regulating organ-specific regeneration, contributing to defective tissue regeneration. These findings suggest that DjsHSP affects stem cell fate and organ regeneration by maintaining the balance between stem cell proliferation and differentiation and modulating tissue-specific transcriptional networks. Our study provides new insights into the molecular mechanisms underlying planarian regeneration, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Bingrui Sun
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Ying Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Ping Yu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Liping Dong
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Jinlei Wang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Jicheng Qu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Shujing Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Changjian Xie
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China.
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
2
|
Zhao Z, Yin D, Yang K, Zhang C, Song L, Xu Z. Transcriptome Sequencing Analysis of the Effects of Metformin on the Regeneration of Planarian Dugesia japonica. Genes (Basel) 2025; 16:365. [PMID: 40282325 PMCID: PMC12026922 DOI: 10.3390/genes16040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Metformin is a widely used oral hypoglycemic agent for treating type 2 diabetes. Planarians, with their remarkable regenerative abilities, are frequently employed as model organisms in stem cell and regeneration studies. This study aimed to investigate the effects of metformin on planarian regeneration, focusing on the regeneration of eyespots after amputation. METHODS Regenerating planarians with amputated eyespots were exposed to various concentrations of metformin. The regeneration time of the eyespots was measured to assess the effects of metformin. Subsequently, a 1 mmol/L metformin treatment for 24 h was applied to the planarians, followed by transcriptome analysis to identify differentially expressed genes (DEGs). The gene expression was validated through qPCR. The full-length gene of casein kinase 1α (DjCK1α) was cloned using RACE technology. DjCK1α interference was performed to examine its role in regeneration. RESULTS Low concentrations of metformin significantly reduced the regeneration time of planarians. Transcriptome analysis identified 113 DEGs, including 61 upregulated and 52 downregulated genes. GO and KEGG enrichment analyses were conducted. Notably, DjCK1α, a key gene involved in regeneration, was selected for further validation. qPCR confirmed that DjCK1α was significantly upregulated. The interference of DjCK1α prolonged the regeneration time of the eyespots of planarians cultured in water, while treatment with metformin did not promote the eyespot regeneration of the DjCK1α-interfered planarians. CONCLUSIONS The results suggest that metformin accelerates planarian eyespot regeneration, potentially through the regulation of DjCK1α. This study provides the first transcriptome-based analysis of drug effects on regeneration in planarians, highlighting the role of metformin in the regeneration process.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenbiao Xu
- Department of Life Sciences, School of Life and Medicine, West Campus, Shandong University of Technology, Zibo 255000, China; (Z.Z.); (D.Y.); (K.Y.); (C.Z.); (L.S.)
| |
Collapse
|
3
|
Gambino G, Da Pozzo E, Salvetti A, Rossi L. Planarian Mucus: A Novel Source of Pleiotropic Cytotoxic and Cytostatic Agents against Cancer Cells. Biomolecules 2024; 14:1075. [PMID: 39334842 PMCID: PMC11430875 DOI: 10.3390/biom14091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Biological evolution has generated a vast array of natural compounds produced by organisms across all domains. Among these, secondary metabolites, selected to enhance an organism's competitiveness in its natural environment, make them a reservoir for discovering new compounds with cytotoxic activity, potentially useful as novel anticancer agents. Slime secretions, the first barrier between epithelial surfaces and the surrounding environment, frequently contain cytotoxic molecules to limit the growth of parasitic organisms. Planarians, freshwater Triclads, continuously secrete a viscous mucus with multiple physiological functions. The chemical composition of planarian mucus has been only partially elucidated, and there are no studies reporting its cytotoxic or cytostatic effects. In this study, we developed a protocol for collecting mucus from Dugesia japonica specimens and we demonstrated that it inhibits the growth of cancer cells by activating cytostatic and ROS-dependent cytotoxic mechanisms inducing lipid droplet accumulation and mitochondrial membrane reorganization. Although further research is needed to identify the specific chemicals responsible for the anticancer activity of planarian mucus, this work opens up numerous research avenues aimed at better understanding the mechanisms of action of this product for potential therapeutic applications.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, Via Volta 4, 56126 Pisa, Italy
| | | | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Via Volta 4, 56126 Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Via Volta 4, 56126 Pisa, Italy
| |
Collapse
|
4
|
Gambino G, Iacopetti P, Ippolito C, Salvetti A, Rossi L. Starvation resistance in planarians: multiple strategies to get a thrifty phenotype. FEBS J 2024; 291:965-985. [PMID: 38037534 DOI: 10.1111/febs.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Starvation resistance is a life-saving mechanism for many organisms facing food availability fluctuation in the natural environment. Different strategies have been episodically identified for some model organisms, the first of which was the ability to suppress metabolic rate. Among the identified strategies, the ability of planarians to shrink their body under fasting conditions and revert the process after feeding (the growth-degrowth process) represents a fascinating mechanism to face long periods of fasting. The growth-degrowth process is strictly related to the capability of planarians to continuously maintain tissue homeostasis and body proportions even in challenging conditions, thanks to the presence of a population of pluripotent stem cells. Here, we take advantage of several previous studies describing the growth-degrowth process and of recent progress in the understanding of planarian homeostasis mechanisms, to identify tissue-selective transcriptional downregulation as a driving strategy for the development of a thrifty phenotype, and the p53 transcription factor as a player in adjusting tissue homeostasis in accordance with food availability.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
5
|
Gambino G, Rossi L, Iacopetti P, Ghezzani C, Guidi P, Linsalata S, Ippolito C, Salvetti A. Microtubule-associated protein 1B is implicated in stem cell commitment and nervous system regeneration in planarians. PLoS One 2022; 17:e0278966. [PMID: 36508441 PMCID: PMC9744283 DOI: 10.1371/journal.pone.0278966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated 1B (MAP1B) proteins are expressed at the nervous system level where they control cytoskeleton activity and regulate neurotransmitter release. Here, we report about the identification of a planarian MAP1B factor (DjMap1B) that is enriched in cephalic ganglia and longitudinal nerve cords but not in neoblasts, the plentiful population of adult stem cells present in planarians, thanks to which these animals can continuously cell turnover and regenerate any lost body parts. DjMap1B knockdown induces morphological anomalies in the nervous system and affects neoblast commitment. Our data put forward a correlation between a MAP1B factor and stem cells and suggest a function of the nervous system in non-cell autonomous control of planarian stem cells.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Ghezzani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
6
|
Gambino G, Iacopetti P, Guidi P, Ippolito C, Linsalata S, Salvetti A, Rossi L. Cell quiescence in planarian stem cells, interplay between p53 and nutritional stimuli. Open Biol 2022; 12:220216. [PMID: 36541101 PMCID: PMC9768645 DOI: 10.1098/rsob.220216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell quiescence appeared early in evolution as an adaptive response to adverse conditions (i.e. nutrient depletion). In metazoans, quiescence has been involved in additional processes like tissue homeostasis, which is made possible by the presence of adult stem cells (ASCs). Cell cycle control machinery is a common hub for quiescence entrance, and evidence indicates a role for p53 in establishing the quiescent state of undamaged cells. Mechanisms responsible for waking up quiescent cells remain elusive, and nutritional stimulus, as a legacy of its original role, still appears to be a player in quiescence exit. Planarians, rich in ASCs, represent a suitable system in which we characterized a quiescent population of ASCs, the dorsal midline cord (DMC) cells, exhibiting unique transcriptional features and maintained quiescent by p53 and awakened upon feeding. The function of DMC cells is puzzling and we speculate that DMC cells, despite retaining ancient properties, might represent a functional drift in which quiescence has been recruited to provide evolutionary advantages.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| |
Collapse
|
7
|
Wang Q, Xie L, Wang Y, Jin B, Ren J, Dong Z, Chen G, Liu D. Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by regulating cell proliferation and apoptosis. Gene 2022; 820:146215. [PMID: 35122923 DOI: 10.1016/j.gene.2022.146215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian. The four genes, Djhsp70a, Djhsp70b, Djhsp70c, and Djhsp70d of the HSP70s, are selected from the transcriptome database, because of their high expression levels in planarians. We then study the biological roles of each gene by conducting various experimental techniques, including RNAi, RT-PCR, WISH, Whole-mount immunostaining and TUNEL. The results show: (1) External stressors, such as temperature, tissue damage and ionic liquid upregulate the expression of Djhsp70s significantly. (2) The gene expression of Djhsp70s in planarians exhibits dynamic patterns. According to the result of WISH, the Djhsp70s are mainly expressed in parenchymal tissues on both sides of the body as well as blastema. It is consistent with the data of qRT-PCR. (3) After RNA interference of Djhsp70s, the worms experience cephalic regression and lysis, body curling, stagnant regeneration and death. (4) Knockdown of Djhsp70s affect the cell proliferation and apoptosis. These results suggest that Djhsp70s are not only conserved in cytoprotection, but involved in homeostasis maintenance and regeneration process by regulating coordination of cell proliferation and apoptosis in planarians.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lijuan Xie
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Jing Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
8
|
Salvetti A, Degl'Innocenti A, Gambino G, van Loon JJ, Ippolito C, Ghelardoni S, Ghigo E, Leoncino L, Prato M, Rossi L, Ciofani G. Artificially altered gravity elicits cell homeostasis imbalance in planarian worms, and cerium oxide nanoparticles counteract this effect. J Biomed Mater Res A 2021; 109:2322-2333. [PMID: 33960131 PMCID: PMC8518838 DOI: 10.1002/jbm.a.37215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
Gravity alterations elicit complex and mostly detrimental effects on biological systems. Among these, a prominent role is occupied by oxidative stress, with consequences for tissue homeostasis and development. Studies in altered gravity are relevant for both Earth and space biomedicine, but their implementation using whole organisms is often troublesome. Here we utilize planarians, simple worm model for stem cell and regeneration biology, to characterize the pathogenic mechanisms brought by artificial gravity alterations. In particular, we provide a comprehensive evaluation of molecular responses in intact and regenerating specimens, and demonstrate a protective action from the space-apt for nanotechnological antioxidant cerium oxide nanoparticles.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Andrea Degl'Innocenti
- Istituto Italiano di TecnologiaCenter for Materials Interfaces, Smart Bio‐InterfacesPisaItaly
| | - Gaetana Gambino
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Jack J.W.A. van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral PathologyAmsterdam UMC location VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA)AmsterdamThe Netherlands
- TEC‐MMG LIS labEuropean Space Agency (ESA), European Space Research and Technology Center (ESTEC)NoordwijkThe Netherlands
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Biology and Genetics UnitUniversità di PisaPisaItaly
| | - Sandra Ghelardoni
- Department of Pathology, Biochemistry UnitUniversità di PisaPisaItaly
| | - Eric Ghigo
- Institut Hospitalo‐Universitaire Méditerranée InfectionMarseilleFrance
- Techno JouvenceMarseilleFrance
| | - Luca Leoncino
- Istituto Italiano di TecnologiaElectron Microscopy FacilityGenoaItaly
| | - Mirko Prato
- Istituto Italiano di TecnologiaMaterials Characterization FacilityGenoaItaly
| | - Leonardo Rossi
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaCenter for Materials Interfaces, Smart Bio‐InterfacesPisaItaly
| |
Collapse
|
9
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Gambino G, Ippolito C, Evangelista M, Salvetti A, Rossi L. Sub-Lethal 5-Fluorouracil Dose Challenges Planarian Stem Cells Promoting Transcriptional Profile Changes in the Pluripotent Sigma-Class Neoblasts. Biomolecules 2021; 11:biom11070949. [PMID: 34206807 PMCID: PMC8301986 DOI: 10.3390/biom11070949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Under physiological conditions, the complex planarian neoblast system is a composite of hierarchically organized stem cell sub-populations with sigma-class neoblasts, including clonogenic neoblasts, endowed with larger self-renewal and differentiation capabilities, thus generating all the other sub-populations and dominating the regenerative process. This complex system responds to differentiated tissue demands, ensuring a continuous cell turnover in a way to replace aged specialized cells and maintain tissue functionality. Potency of the neoblast system can be appreciated under challenging conditions in which these stem cells are massively depleted and the few remaining repopulate the entire body, ensuring animal resilience. These challenging conditions offer the possibility to deepen the relationships among different neoblast sub-populations, allowing to expose uncanonical properties that are negligible under physiological conditions. In this paper, we employ short, sub-lethal 5-fluorouracil treatment to specifically affect proliferating cells passing through the S phase and demonstrate that S-phase slowdown triggers a shift in the transcriptional profile of sigma neoblasts, which reduces the expression of their hallmark sox-P1. Later, some cells reactivate sox-P1 expression, suggesting that some neoblasts in the earlier steps of commitment could modulate their expression profile, reacquiring a wider differentiative potential.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| | | | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
- Correspondence: ; Tel.: +39-0502219108
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| |
Collapse
|
11
|
Sharma M, Kulkarni A, Sasikala M, Kumar P, Jaggaiahgari S, Pondugala K, Jaishetwar G, Darisetty S, Jagtap N, Gupta R, Singh JR, Fatima S, Rao PN, Rao GV, Reddy DN. Long-term Outcome of Autologous Hematopoietic Stem Cell Infusion in Cirrhosis: Waning Effect over Time. J Clin Transl Hepatol 2020; 8:385-390. [PMID: 33447521 PMCID: PMC7782109 DOI: 10.14218/jcth.2020.00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: Long-term data on cell-based therapies, including hematopoietic stem cell infusion in cirrhosis, are sparse and lacking. Methods: Patients with cirrhosis of non-viral etiology received either standard-of-care (n = 23) or autologous CD34+ cell infusion through the hepatic artery (n = 22). Study patients received granulocyte colony-stimulating factor (commonly known as G-CSF) injections at 520 µgm per day for 3 days, followed by leukapheresis and CD34+ cell infusion into the hepatic artery. The Control group received standard-of-care treatment. Results: Mean CD34+ cell count on the third day of G-CSF injection was 27.00 ± 20.43 cells/µL 81.84 ± 11.99 viability and purity of 80-90%. Significant improvement in the model of end-stage liver disease (commonly known as MELD) score (15.75 ± 5.13 vs. 19.94 ± 6.68, p = 0.04) was noted at end of 3 months and 1 year (15.5 ± 5.3 vs. 19.8 ± 6.4, p = 0.04) but was not statistically different at end of the second (17.2 ± 5.5 vs. 20.3 ± 6.8, p = 0.17) and third-year (18.4 ± 6.1 vs. 21.3 ± 6.4, p = 0.25). No difference in mortality (6/23 vs. 5/23) was noted. Conclusions: Autologous CD34+ cell infusion effectively improved liver function and MELD score up to 1 year but the sustained benefit was not maintained at the end of 3 years, possibly due to ongoing progression of the underlying disease.
Collapse
Affiliation(s)
- Mithun Sharma
- Asian Institute of Gastroenterology, Hyderabad, India
- Correspondence to: Dr. Mithun Sharma, Hepatology, and Liver Transplantation, Asian Institute of Gastroenterology, Hyderabad, India. Tel: +91-4042342234, Fax: +91-4042342334, E-mail:
| | | | | | - Pramod Kumar
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | | | | | | | - Nitin Jagtap
- Asian Institute of Gastroenterology, Hyderabad, India
| | - Rajesh Gupta
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Syeda Fatima
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | | | | |
Collapse
|
12
|
Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'Innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G. Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111113. [DOI: 10.1016/j.msec.2020.111113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
13
|
Gambino G, Falleni A, Nigro M, Salvetti A, Cecchettini A, Ippolito C, Guidi P, Rossi L. Dynamics of interaction and effects of microplastics on planarian tissue regeneration and cellular homeostasis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105354. [PMID: 31734615 DOI: 10.1016/j.aquatox.2019.105354] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Increasing microplastics pollution of marine and terrestrial water is a concerning issue for ecosystems and human health. Nevertheless, the interaction of microplastics with freshwater biota is still a poorly explored field. In order to achieve information concerning the uptake, distribution and effect of microplastics in planarians, Dugesia japonica specimens have been fed with mixtures of food and differently shaped and sized plastic particles. Feeding activity and food intake were non-altered by the presence of high concentrations of different types of plastic particles. However, the persistence of microplastic within the planarian body was a function of size/shape, being small spheres (<10 μm in diameter) and short fibers (14 μm large and 5/6 μm length) more persisting than larger spheres and longer fibers which were eliminated almost entirely by ejection in a few hours. Transmission electron microscopy analysis demonstrated that at least part of microplastics was phagocytized by the enterocytes. Chronic exposure to small plastic did not alter the regenerative ability but caused a significant reduction of the gut epithelium thickness and lipid content of enterocytes, together with the induction of apoptotic cell death, modulation of Djgata 4/5/6 expression and reduced growth rate. The ability of microplastic to perturb planarian homeostasis is concerning being them extremely resilient against mechanical and chemical insults and suggests possible harmful effects upon other more susceptible species in freshwater ecosystems.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Marco Nigro
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Antonella Cecchettini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy.
| |
Collapse
|
14
|
Ermakov AM, Ermakova ON, Popov AL, Manokhin AA, Ivanov VK. Opposite effects of low intensity light of different wavelengths on the planarian regeneration rate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111714. [PMID: 31830733 DOI: 10.1016/j.jphotobiol.2019.111714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Planarian freshwater flatworms have the unique ability to regenerate due to stem cell activity. The process of regeneration is extremely sensitive to various factors, including light radiation. Here, the effect of low-intensity LED light of different wavelengths on regeneration, stem cell proliferation and gene expression associated with these processes was studied. LED matrices with different wavelengths (red (λmax = 635 nm), green (λmax = 520 nm) and blue (λmax = 463 nm), as well as LED laser diodes (red (λmax = 638.5 nm), green (λmax = 533 nm) and blue (λmax = 420 nm), were used in the experiments. Computer-assisted morphometry, whole-mount immunocytochemical study and RT-PCR were used to analyze the biological effects of LED light exposure on the planarian regeneration in vivo. It was found that a one-time exposure of regenerating planarians with low-intensity red light diodes stimulated head blastema growth in a dose-dependent manner (up to 40%). The green light exposure of planarians resulted in the opposite effect, showing a reduced head blastema growth rate by up to 21%. The blue light exposure did not lead to any changes in the rate of head blastema growth. The maximum effects of light exposure were observed at a dose of 175.2 mJ/cm2. No significant differences were revealed in the dynamics of neoblasts' (planarian stem cells) proliferation under red and green light exposure. However, the RT-PCR gene expression analysis of 46 wound-induced genes revealed their up-regulation upon red LED light exposure, and down-regulation upon green light exposure. Thus, we have demonstrated that the planarian regeneration process is rather sensitive to the effects of low-intensity light radiation of certain wavelengths, the biological activity of red and green light being dictated by the different expression of the genes regulating transcriptional activity.
Collapse
Affiliation(s)
- A M Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - O N Ermakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - A L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - A A Manokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Oblast 142290, Russia
| | - V K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|