1
|
Hutchinson K, Schlessinger A. Comprehensive Characterization of LAT1 Cholesterol-Binding Sites. J Chem Theory Comput 2024; 20:3349-3358. [PMID: 38597304 PMCID: PMC11913013 DOI: 10.1021/acs.jctc.3c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The human L-type amino acid transporter 1 (LAT1; SLC7A5), is an amino acid exchanger protein, primarily found in the blood-brain barrier, placenta, and testis, where it plays a key role in amino acid homeostasis. Cholesterol is an essential lipid that has been highlighted to play a role in regulating the activity of membrane transporters, such as LAT1, yet little is known about the molecular mechanisms driving this phenomenon. Here we perform a comprehensive computational analysis to investigate cholesterol's role in LAT1 structure and function, focusing on four cholesterol-binding sites (CHOL1-4) identified in a recent LAT1-apo inward-open conformation cryo-EM structure. Through a series of independent molecular dynamics (MD) simulations, molecular docking, MM/GBSA free energy calculations, and other analysis tools, we explored the interactions between LAT1 and cholesterol. Our findings suggest that CHOL3 forms the most stable and favorable interactions with LAT1. Principal component analysis (PCA) and center of mass (COM) distance assessments show that CHOL3 binding stabilizes the inward-open state of LAT1 by preserving the spatial arrangement of the hash and bundle domains. Additionally, we propose an alternative cholesterol-binding site for originally assigned CHOL1. Overall, this study improves the understanding of cholesterol's modulatory effect on LAT1 and proposes candidate sites for the discovery of future allosteric ligands with rational design.
Collapse
Affiliation(s)
- Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
2
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Rosenbaum T, Morales-Lázaro SL. Regulation of ThermoTRP Channels by PIP2 and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:245-277. [PMID: 36988884 DOI: 10.1007/978-3-031-21547-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
4
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
5
|
Schneider EH, Fitzgerald AC, Ponnapula SS, Dopico AM, Bukiya AN. Differential distribution of cholesterol pools across arteries under high-cholesterol diet. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159235. [PMID: 36113825 DOI: 10.1016/j.bbalip.2022.159235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Excessive cholesterol constitutes a major risk factor for vascular disease. Within cells, cholesterol is distributed in detergent-sensitive and detergent-resistant fractions, with the largest amount of cholesterol residing in cellular membranes. We set out to determine whether various arteries differ in their ability to accumulate esterified and non-esterified cholesterol in detergent-sensitive versus detergent-resistant fractions throughout the course of a high-cholesterol diet. Male Sprague-Dawley rats were placed on 2 % cholesterol diet while a control group was receiving iso-caloric standard chow. Liver, aorta, and pulmonary, mesenteric, and cerebral arteries were collected at 2-6, 8-12, 14-18, and 20-24 weeks from the start of high-cholesterol diet. After fraction separation, esterified and free non-esterified cholesterol levels were measured. In all arteries, largest cholesterol amounts were present in detergent-sensitive fractions in the non-esterified form. Overall, cholesterol in aorta and cerebral arteries was elevated during 14-18 weeks of high-cholesterol diet. Cerebral arteries also exhibited increase in esterified cholesterol within detergent-sensitive domains, as well as increase in cholesterol level in the detergent-resistant fraction at earlier time-points of diet. Pulmonary artery and mesenteric artery were largely resistant to cholesterol accumulation. Quantitative polymerase chain reaction (qPCR) analysis revealed up-regulation of low-density lipoprotein receptor (Ldlr) and low-density lipoprotein receptor-related protein 1 (Lrp1) gene expression in cerebral arteries when compared to mesenteric and pulmonary arteries, respectively. In summary, we unveiled the differential ability of arteries to accumulate cholesterol over the course of a high-cholesterol diet. The differential accumulation of cholesterol seems to correlate with the up-regulated gene expression of proteins responsible for cholesterol uptake.
Collapse
Affiliation(s)
- Elizabeth H Schneider
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Amanda C Fitzgerald
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Supriya Suzy Ponnapula
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
6
|
The role of cholesterol recognition (CARC/CRAC) mirror codes in the allosterism of the human organic cation transporter 2 (OCT2, SLC22A2). Biochem Pharmacol 2021; 194:114840. [PMID: 34774844 DOI: 10.1016/j.bcp.2021.114840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022]
Abstract
The human organic cation transporter 2 (OCT2) is a multispecific transporter with cholesterol-dependent allosteric features. The present work elucidates the role of evolutionarily conserved cholesterol recognition/interaction amino acid consensus sequences (CRAC and CARC) in the allosteric binding to 1-methyl-4-phenylpyridinium (MPP+) in human embryonic kidney 293 cells stably or transiently expressing OCT2. Molecular blind simulations docked two mirroring cholesterol molecules in the 5th putative transmembrane domain, where a CARC and a CRAC sequence lie. The impact of the conserved amino acids that may constitute the CARC/CRAC mirror code was studied by alanine-scanning mutagenesis. At a saturating extracellular concentration of substrate, at which the impact of cholesterol depletion is maximal, five mutants transported MPP+ at a significantly lower rate than the wild-type OCT2 (WT), resembling the behavior of the WT upon cholesterol depletion. MPP+ influx rate as a function of the extracellular concentration of substrate was measured for the mutants R234A, R235A, L252A and R263A. R234A kinetic behavior was similar to that of the WT, whereas R235A, L252A and R263A activity shifted from allosteric to one-binding site kinetics, very much like the WT upon cholesterol depletion. The impact of cholesterol on protein thermal stability was assessed for WT, R234A and R263A. While the thermal stability of WT and R234A was improved by the supplementation with cholesterol, R263A was not sensitive to the presence of cholesterol. To conclude, the disruption of the CARC/CRAC mirror code in the 5th putative transmembrane domain is sufficient to abolish the allosteric interaction between OCT2 and MPP+.
Collapse
|
7
|
Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys J 2021; 120:1592-1604. [PMID: 33640379 DOI: 10.1016/j.bpj.2021.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is an integral component of mammalian membranes. It has been shown to modulate membrane fluidity and dynamics and alter integral membrane protein function. However, understanding the molecular mechanisms of how cholesterol impacts protein function is complicated by limited and conflicting structural data. Because of the nature of the crystallization and cryo-EM structure determination, it is difficult to distinguish between specific and biologically relevant interactions and a nonspecific association. The only widely recognized search algorithm for cholesterol-integral-membrane-protein interaction sites is sequence based, i.e., searching for the so-called "Cholesterol Recognition/interaction Amino acid Consensus" motif. Although these motifs are present in numerous integral membrane proteins, there is inconclusive evidence to support their necessity or sufficiency for cholesterol binding. Here, we leverage the increasing number of experimental cholesterol-integral-membrane-protein structures to systematically analyze putative interaction sites based on their spatial arrangement and evolutionary conservation. This analysis creates three-dimensional representations of general cholesterol interaction sites that form clusters across multiple integral membrane protein classes. We also classify cholesterol-integral-membrane-protein interaction sites as either likely-specific or nonspecific. Information gleaned from our characterization will eventually enable a structure-based approach to predict and design cholesterol-integral-membrane-protein interaction sites.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bian Li
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| |
Collapse
|
8
|
Elkins MR, Bandara A, Pantelopulos GA, Straub JE, Hong M. Direct Observation of Cholesterol Dimers and Tetramers in Lipid Bilayers. J Phys Chem B 2021; 125:1825-1837. [DOI: 10.1021/acs.jpcb.0c10631] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew R. Elkins
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|