1
|
Dos Santos Natividade R, Danzer B, Somoza V, Koehler M. Atomic force microscopy at the forefront: unveiling foodborne viruses with biophysical tools. NPJ VIRUSES 2025; 3:25. [PMID: 40295860 PMCID: PMC11971264 DOI: 10.1038/s44298-025-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Foodborne viruses are significant public health threats, capable of causing life-threatening infections and posing major risks for future pandemics. However, the development of vaccines and treatments remains limited due to gaps in understanding their biophysical properties. Among these viruses, noroviruses are currently the leading cause of viral gastroenteritis globally and are responsible for numerous foodborne outbreaks. In this review, we explore the use of biophysical methods, with a focus on atomic force microscopy (AFM), to study foodborne viruses. We demonstrate how AFM can provide crucial insights into virus-host interactions, transmission dynamics, and environmental stability. We also show that the integration of various biophysical approaches offers new opportunities for advancing our understanding of foodborne viruses, ultimately guiding the development of effective prevention strategies and antiviral therapies.
Collapse
Affiliation(s)
| | - Barbara Danzer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- School of Life Science, Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Ray A, Simpson JD, Demir I, Gisbert VG, Gomes DB, Amadei F, Alsteens D. From viral assembly to host interaction: AFM's contributions to virology. J Virol 2025; 99:e0087324. [PMID: 39655953 PMCID: PMC11784315 DOI: 10.1128/jvi.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Viruses represent a diverse pool of obligate parasites that infect virtually every known organism, as such, their study is incredibly valuable for a range of fields including public health, medicine, agriculture, and ecology, and the development of biomedical technologies. Having evolved over millions of years, each virus has a unique and often complicated biology, that must be characterized on a case-by-case basis, even between strains of the same taxon. Owing to its nanoscale spatial resolution, atomic force microscopy (AFM) represents a powerful tool for exploring virus biology, including structural features, kinetics of binding to host cell ligands, virion self-assembly, and budding behaviors. Through the availability of numerous chemistries and advances in imaging modes, AFM is able to explore the complex web of host-virus interactions and life-cycle at a single virus level, exploring features at the level of individual bonds and molecules. Due to the wide array of techniques developed and data analysis approaches available, AFM can provide information that cannot be furnished by other modalities, especially at a single virus level. Here, we highlight the unique methods and information that can be obtained through the use of AFM, demonstrating both its utility and versatility in the study of viruses. As the technology continues to rapidly evolve, AFM is likely to remain an integral part of research, providing unique and important insight into many aspects of virology.
Collapse
Affiliation(s)
- Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joshua D. Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Irem Demir
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Victor G. Gisbert
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David B. Gomes
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Federico Amadei
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Cantero M, Cvirkaite-Krupovic V, Krupovic M, de Pablo PJ. Mechanical tomography of an archaeal lemon-shaped virus reveals membrane-like fluidity of the capsid and liquid nucleoprotein cargo. Proc Natl Acad Sci U S A 2023; 120:e2307717120. [PMID: 37824526 PMCID: PMC10589707 DOI: 10.1073/pnas.2307717120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris75015, France
| | - Pedro J. de Pablo
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid28049, Spain
| |
Collapse
|
5
|
Cardoso-Lima R, Santos-Oliveira R, Souza PFN, Barbosa LRS, Wuite GJL, Alencar LMR. Physical virology: how physics is enabling a better understanding of recent viral invaders. Biophys Rev 2023; 15:611-623. [PMID: 37681101 PMCID: PMC10480132 DOI: 10.1007/s12551-023-01075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 09/09/2023] Open
Abstract
The world is frequently afflicted by several viral outbreaks that bring diseases and health crises. It is vital to comprehend how viral assemblies' fundamental components work to counteract them. Determining the ultrastructure and nanomechanical characteristics of viruses from a physical standpoint helps categorize their mechanical characteristics, offers insight into new treatment options, and/or shows weak spots that can clarify methods for medication targeting. This study compiles the findings from studies on the ultrastructure and nanomechanical behavior of SARS-CoV-2, ZIKV (Zika virus), and CHIKV (Chikungunya virus) viral particles. With results that uncovered aspects of the organization and the spatial distribution of the proteins on the surface of the viral particle as well as the deformation response of the particles when applied a recurring loading force, this review aims to provide further discussion on the mechanical properties of viral particles at the nanoscale, offering new prospects that could be employed for designing strategies for the prevention and treatment of viral diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01075-4.
Collapse
Affiliation(s)
- Ruana Cardoso-Lima
- Physics Department, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, São Luís, MA Brazil
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro, 23070200 Brazil
| | - Pedro Filho Noronha Souza
- Department of Biochemistry, Federal University of Ceará, Fortaleza, CE Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE Brazil
| | - Leandro R. S. Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo, SP 05508-000 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100 Brazil
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Petkidis A, Andriasyan V, Greber UF. Label-free microscopy for virus infections. Microscopy (Oxf) 2023; 72:204-212. [PMID: 37079744 PMCID: PMC10250014 DOI: 10.1093/jmicro/dfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Microscopy has been essential to elucidate micro- and nano-scale processes in space and time and has provided insights into cell and organismic functions. It is widely employed in cell biology, microbiology, physiology, clinical sciences and virology. While label-dependent microscopy, such as fluorescence microscopy, provides molecular specificity, it has remained difficult to multiplex in live samples. In contrast, label-free microscopy reports on overall features of the specimen at minimal perturbation. Here, we discuss modalities of label-free imaging at the molecular, cellular and tissue levels, including transmitted light microscopy, quantitative phase imaging, cryogenic electron microscopy or tomography and atomic force microscopy. We highlight how label-free microscopy is used to probe the structural organization and mechanical properties of viruses, including virus particles and infected cells across a wide range of spatial scales. We discuss the working principles of imaging procedures and analyses and showcase how they open new avenues in virology. Finally, we discuss orthogonal approaches that enhance and complement label-free microscopy techniques.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| |
Collapse
|
7
|
Surface characterization of alkane viral anchoring films prepared by titanate-assisted organosilanization. Colloids Surf B Biointerfaces 2023; 222:113136. [PMID: 36641873 DOI: 10.1016/j.colsurfb.2023.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Studies of virus adsorption on surfaces with optimized properties have attracted a lot of interest, mainly due to the influence of the surface in the retention, orientation and stability of the viral capsids. Besides, viruses in whole or in parts can be used as cages or vectors in different areas, such as biomedicine and materials science. A key requirement for virus nanocage application is their physical properties, i.e. their mechanical response and the distribution of surface charge, which determine virus-substrate interactions and stability. In the present work we show two examples of viruses exhibiting strong surface interactions on homogeneous hydrophobic surfaces. The surfaces were prepared by titanate assisted organosilanization, a sol-gel spin coating process, followed by a mild annealing step. We show by surface and interface spectroscopies that the process allows trapping triethoxy-octylsilane (OCTS) molecules, exhibiting a hydrophobic alkane rich surface finishing. Furthermore, the surfaces remain flat and behave as more efficient sorptive surfaces for virus particles than mica or graphite (HOPG). Also, we determine by atomic force microscopy (AFM) the mechanical properties of two types of viruses (human adenovirus and reovirus) and compare the results obtained on the OCTS functionalized surfaces with those obtained on mica and HOPG. Finally, the TIPT+OCTS surfaces were validated as platforms for the morphological and mechanical characterization of virus particles by using adenovirus as initial model and using HOPG and mica as standard control surfaces. Then, the same characteristics were determined on reovirus using TIPT+OCTS and HOPG, as an original contribution to the catalogue of physical properties of viral particles.
Collapse
|
8
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
9
|
Tagiltsev G, Haselwandter CA, Scheuring S. Nanodissected elastically loaded clathrin lattices relax to increased curvature. SCIENCE ADVANCES 2021; 7:7/33/eabg9934. [PMID: 34389539 PMCID: PMC8363152 DOI: 10.1126/sciadv.abg9934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytosis pathway for the specific internalization of large compounds, growth factors, and receptors. Formation of internalized vesicles from the flat plasma membrane is accompanied by maturation of cytoplasmic clathrin coats. How clathrin coats mature and the mechanistic role of clathrin coats are still largely unknown. Maturation models proposed clathrin coats to mature at constant radius or constant area, driven by molecular actions or elastic energy. Here, combining high-speed atomic force microscopy (HS-AFM) imaging, HS-AFM nanodissection, and elasticity theory, we show that clathrin lattices deviating from the intrinsic curvature of clathrin form elastically loaded assemblies. Upon nanodissection of the clathrin network, the stored elastic energy in these lattices drives lattice relaxation to accommodate an ideal area-curvature ratio toward the formation of closed clathrin-coated vesicles. Our work supports that the release of elastic energy stored in curvature-frustrated clathrin lattices could play a major role in CME.
Collapse
Affiliation(s)
- Grigory Tagiltsev
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
10
|
Enderich DA, Hoff BW, Geiler M, Geiler A, Ottesen C, Cohick ZW, McConaha JW, Pohle HH, Franzi MA, Lepell PD, Montoya T, Schrock JA, Luginsland JW, Revelli D, Cox J, Irshad H. Nonlinear transmission line-driven apparatus for short-pulse microwave exposure of aerosolized pathogens. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:064712. [PMID: 34243497 DOI: 10.1063/5.0046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
A system capable of exposing a flowing aerosol stream to short duration (2-4 ns), high-power RF waveforms is described. The system utilizes a C-band gyromagnetic nonlinear transmission line source having peak power outputs ranging as high as 80 kW at a center frequency of 4.2 GHz. RF electric field magnitudes of up to 280 kV/m ± 17% are achieved within the aerosol flow region of the RF exposure apparatus.
Collapse
Affiliation(s)
- Daniel A Enderich
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Brad W Hoff
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Michael Geiler
- Metamagnetics, Inc., Westborough, Massachusetts 01581, USA
| | - Anton Geiler
- Metamagnetics, Inc., Westborough, Massachusetts 01581, USA
| | - Casey Ottesen
- COSMIAC Research Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zane W Cohick
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Jeremy W McConaha
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Hugh H Pohle
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Matthew A Franzi
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | | | | | - James A Schrock
- Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, New Mexico 87117, USA
| | | | - David Revelli
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico 87108, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico 87108, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico 87108, USA
| |
Collapse
|
11
|
Bhat SV, Price JDW, Dahms TES. AFM-Based Correlative Microscopy Illuminates Human Pathogens. Front Cell Infect Microbiol 2021; 11:655501. [PMID: 34026660 PMCID: PMC8138568 DOI: 10.3389/fcimb.2021.655501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Jared D W Price
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
12
|
Arista-Romero M, Pujals S, Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Front Bioeng Biotechnol 2021; 9:647874. [PMID: 33842446 PMCID: PMC8033170 DOI: 10.3389/fbioe.2021.647874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
13
|
Kiss B, Kis Z, Pályi B, Kellermayer MSZ. Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. NANO LETTERS 2021; 21:2675-2680. [PMID: 33474931 PMCID: PMC7839418 DOI: 10.1021/acs.nanolett.0c04465] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, displays a corona-shaped layer of spikes which play a fundamental role in the infection process. Recent structural data suggest that the spikes possess orientational freedom and the ribonucleoproteins segregate into basketlike structures. How these structural features regulate the dynamic and mechanical behavior of the native virion are yet unknown. By imaging and mechanically manipulating individual, native SARS-CoV-2 virions with atomic force microscopy, here, we show that their surface displays a dynamic brush owing to the flexibility and rapid motion of the spikes. The virions are highly compliant and able to recover from drastic mechanical perturbations. Their global structure is remarkably temperature resistant, but the virion surface becomes progressively denuded of spikes upon thermal exposure. The dynamics and the mechanics of SARS-CoV-2 are likely to affect its stability and interactions.
Collapse
Affiliation(s)
- Bálint Kiss
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Tűzoltó str. 37-47, Budapest H-1094, Hungary
| | - Zoltán Kis
- National
Biosafety Laboratory, National Public Health
Center, Albert Flórián Rd 2-6, Budapest H-1097, Hungary
- Department
of Medical Microbiology, Semmelweis University, Nagyvárad Sq. 4, Budapest H-1089, Hungary
| | - Bernadett Pályi
- National
Biosafety Laboratory, National Public Health
Center, Albert Flórián Rd 2-6, Budapest H-1097, Hungary
| | - Miklós S. Z. Kellermayer
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Tűzoltó str. 37-47, Budapest H-1094, Hungary
- Hungarian
Centre of Excellence for Molecular Medicine (HCEMM), In Vivo Imaging Advanced Core Facility, Budapest H-1094, Hungary
| |
Collapse
|
14
|
Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophys Rev 2020; 12:1141-1154. [PMID: 32880826 PMCID: PMC7471434 DOI: 10.1007/s12551-020-00747-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
The development of advanced experimental methodologies, such as optical tweezers, scanning-probe and super-resolved optical microscopies, has led to the evolution of single-molecule biophysics, a field of science that allows direct access to the mechanistic detail of biomolecular structure and function. The extension of single-molecule methods to the investigation of particles such as viruses permits unprecedented insights into the behavior of supramolecular assemblies. Here we address the scope of viral exploration at the level of individual particles. In an era of increased awareness towards virology, single-particle approaches are expected to facilitate the in-depth understanding, and hence combating, of viral diseases.
Collapse
Affiliation(s)
- Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dorottya Mudra
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - György Török
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|