1
|
Liu Z, Zhang N, Xin B, Shi Y, Liang Z, Wan Y, Hu X. Exosomes from LSD1 knockdown breast cancer cells activate osteoclastogenesis and inhibit osteoblastogenesis. Int J Biol Macromol 2023; 235:123792. [PMID: 36828097 DOI: 10.1016/j.ijbiomac.2023.123792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Bone metastasis is a common and incurable complication of breast cancer. Lysine-specific demethylase 1 (LSD1), a histone demethylase, plays an important role in the metastasis of breast cancer. However, the role of LSD1 in bone metastasis of breast cancer is unclear. We hypothesized that exosomes from LSD1 knockdown breast cancer cells promote bone metastasis by remodeling bone microenvironment. To verify this hypothesis, exosomes from LSD1 knockdown Estrogen receptor-positive cancer cell lines, MCF7 and T47D, were isolated, and the effects of these exosomes on osteoblast and osteoclast differentiation were investigated. Interestingly, exosomes from LSD1 knockdown breast cancer cells inhibited osteoblast differentiation and promoted osteoclast differentiation. Mechanistically, miR-6881-3p was decreased in the exosomes from LSD1 knockdown cells, and miR-6881-3p suppressed the expression of pre-B-cell leukemia homeobox 1 (PBX1) and additional sex combs like-2 (ASXL2), two genes with essential functions in osteoblast and osteoclast differentiations respectively. Transfection of miR-6881-3p into LSD1 knockdown cells reversed the effects of the exosomes on osteoblast and osteoclast differentiations. Our study reveals important roles of LSD1 on the regulation of exosomal miRNAs and the formation of favorable bone microenvironment for metastasis.
Collapse
Affiliation(s)
- Ziyu Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Nan Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Zehua Liang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
2
|
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12:ani12151946. [PMID: 35953935 PMCID: PMC9367262 DOI: 10.3390/ani12151946] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Bone is an extremely metabolically active tissue that is regenerated and repaired over its lifetime by bone remodeling. Most bone diseases are caused by abnormal restructure processes that undermine bone structure and mechanical strength and trigger clinical symptoms, such as pain, deformity, fracture, and abnormalities of calcium and phosphate homoeostasis. The article examines the main aspects of bone development, anatomy, structure, and the mechanisms of cell and molecular regulation of bone remodeling. Abstract As an essential component of the skeleton, bone tissue provides solid support for the body and protects vital organs. Bone tissue is a reservoir of calcium, phosphate, and other ions that can be released or stored in a controlled manner to provide constant concentration in body fluids. Normally, bone development or osteogenesis occurs through two ossification processes (intra-articular and intra-chondral), but the first produces woven bone, which is quickly replaced by stronger lamellar bone. Contrary to commonly held misconceptions, bone is a relatively dynamic organ that undergoes significant turnover compared to other organs in the body. Bone metabolism is a dynamic process that involves simultaneous bone formation and resorption, controlled by numerous factors. Bone metabolism comprises the key actions. Skeletal mass, structure, and quality are accrued and maintained throughout life, and the anabolic and catabolic actions are mostly balanced due to the tight regulation of the activity of osteoblasts and osteoclasts. This activity is also provided by circulating hormones and cytokines. Bone tissue remodeling processes are regulated by various biologically active substances secreted by bone tissue cells, namely RANK, RANKL, MMP-1, MMP-9, or type 1 collagen. Bone-derived factors (BDF) influence bone function and metabolism, and pathophysiological conditions lead to bone dysfunction. This work aims to analyze and evaluate the current literature on various local and systemic factors or immune system interactions that can affect bone metabolism and its impairments.
Collapse
|
3
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
4
|
Canter BS, Leung CN, Fritton JC, Bäck T, Rajon D, Azzam EI, Howell RW. Radium-223-induced Bystander Effects Cause DNA Damage and Apoptosis in Disseminated Tumor Cells in Bone Marrow. Mol Cancer Res 2021; 19:1739-1750. [PMID: 34039648 DOI: 10.1158/1541-7786.mcr-21-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Radiation-induced bystander effects have been implicated in contributing to the growth delay of disseminated tumor cells (DTC) caused by 223RaCl2, an alpha particle-emitting radiopharmaceutical. To understand how 223RaCl2 affects the growth, we have quantified biological changes caused by direct effects of radiation and bystander effects caused by the emitted radiations on DTC and osteocytes. Characterizing these effects contribute to understanding the efficacy of alpha particle-emitting radiopharmaceuticals and guide expansion of their use clinically. MDA-MB-231 or MCF-7 human breast cancer cells were inoculated intratibially into nude mice that were previously injected intravenously with 50 or 600 kBq/kg 223RaCl2. At 1-day and 3-days postinoculation, tibiae were harvested and examined for DNA damage (γ-H2AX foci) and apoptosis in osteocytes and cancer cells located within and beyond the range (70 μm) of alpha particles emitted from the bone surface. Irradiated and bystander MDA-MB-231 and MCF-7 cells harbored DNA damage. Bystander MDA-MB-231 cells expressed DNA damage at both treatment levels while bystander MCF-7 cells required the higher administered activity. Osteocytes also had DNA damage regardless of inoculated cancer cell line. The extent of DNA damage was quantified by increases in low (1-2 foci), medium (3-5 foci), and high (5+ foci) damage. MDA-MB-231 but not MCF-7 bystander cells showed increases in apoptosis in 223RaCl2-treated animals, as did irradiated osteocytes. In summary, radiation-induced bystander effects contribute to DTC cytotoxicity caused by 223RaCl2. IMPLICATIONS: This observation supports clinical investigation of the efficacy of 223RaCl2 to prevent breast cancer DTC from progressing to oligometastases.
Collapse
Affiliation(s)
- Brian S Canter
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Calvin N Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - J Christopher Fritton
- Departments of Mechanical and Biomedical Engineering, City College of New York, New York, New York
| | - Tom Bäck
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Didier Rajon
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.,Radiobiology and Health Branch, Canadian Nuclear Laboratories, Ontario, Canada
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
5
|
Hochheuser C, Windt LJ, Kunze NY, de Vos DL, Tytgat GA, Voermans C, Timmerman I. Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells Dev 2021; 30:59-78. [PMID: 33287630 PMCID: PMC7826431 DOI: 10.1089/scd.2020.0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the second most common solid cancer in childhood, accounting for 15% of cancer-related deaths in children. In high-risk NB patients, the majority suffers from metastasis. Despite intensive multimodal treatment, long-term survival remains <40%. The bone marrow (BM) is among the most common sites of distant metastasis in patients with high-risk NB. In this environment, small populations of tumor cells can persist after treatment (minimal residual disease) and induce relapse. Therapy resistance of these residual tumor cells in BM remains a major obstacle for the cure of NB. A detailed understanding of the microenvironment and its role in tumor progression is of utmost importance for improving the treatment efficiency of NB. In BM, mesenchymal stromal cells (MSCs) constitute an important part of the microenvironment, where they support hematopoiesis and modulate immune responses. Their role in tumor progression is not completely understood, especially for NB. Although MSCs have been found to promote epithelial-mesenchymal transition, tumor growth, and metastasis and to induce chemoresistance, some reports point toward a tumor-suppressive effect of MSCs. In this review, we aim to compile current knowledge about the role of MSCs in NB development and progression. We evaluate arguments that depict tumor-supportive versus -suppressive properties of MSCs in the context of NB and give an overview of factors involved in MSC-NB crosstalk. A focus lies on the BM as a metastatic niche, since that is the predominant site for NB metastasis and relapse. Finally, we will present opportunities and challenges for therapeutic targeting of MSCs in the BM microenvironment.
Collapse
Affiliation(s)
- Caroline Hochheuser
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Laurens J. Windt
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina Y. Kunze
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieuwke L. de Vos
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
6
|
Breast Cancer Derived Extracellular Vesicles in Bone Metastasis Induction and Their Clinical Implications as Biomarkers. Int J Mol Sci 2020; 21:ijms21103573. [PMID: 32443642 PMCID: PMC7278927 DOI: 10.3390/ijms21103573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer incidence and mortality are rapidly growing worldwide. The main risk factors for cancer can be associated with aging as well as the growth of the population and socioeconomic condition. Breast cancer, a crucial public health problem, is the second cause of death among women. About 70% of patients with advanced breast cancer have bone metastases. In bone metastasis, cancer cells and osteoclasts form a vicious cycle: cancer cells promote osteoclast differentiation and activation that, in turn, induce cancer cell seeding and proliferation in the bone. Growing evidence shows that extracellular vesicles (EVs) play a key role in carcinogenesis, proliferation, pre-metastatic niche formation, angiogenesis, metastasis, and chemoresistance in several tumors, such as breast, lung, prostate, and liver cancer. Here, we discuss the role of EVs released by breast cancer cells, focusing on bone metastasis induction and their clinical implications as biomarkers.
Collapse
|