1
|
Lee DJ, Shin DH, Son YH, Han JW, Oh JH, Kim DH, Jeong JH, Kam TE. Spectral Graph Neural Network-Based Multi-Atlas Brain Network Fusion for Major Depressive Disorder Diagnosis. IEEE J Biomed Health Inform 2024; 28:2967-2978. [PMID: 38363664 DOI: 10.1109/jbhi.2024.3366662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Major Depressive Disorder (MDD) imposes a substantial burden within the healthcare domain, impacting millions of individuals worldwide. Functional Magnetic Resonance Imaging (fMRI) has emerged as a promising tool for the objective diagnosis of MDD, enabling the investigation of functional connectivity patterns in the brain associated with this disorder. However, most existing methods focus on a single brain atlas, which limits their ability to capture the complex, multi-scale nature of functional brain networks. To address these limitations, we propose a novel multi-atlas fusion method that incorporates early and late fusion in a unified framework. Our method introduces the concept of the holistic Functional Connectivity Network (FCN), which captures both intra-atlas relationships within individual atlases and inter-regional relationships between atlases with different brain parcellation scales. This comprehensive representation enables the identification of potential disease-related patterns associated with MDD in the early stage of our framework. Moreover, by decoding the holistic FCN from various perspectives through multiple spectral Graph Convolutional Neural Networks and fusing their results with decision-level ensembles, we further improve the performance of MDD diagnosis. Our approach is easily implemented with minimal modifications to existing model structures and demonstrates a robust performance across different baseline models. Our method, evaluated on public resting-state fMRI datasets, surpasses the current multi-atlas fusion methods, enhancing the accuracy of MDD diagnosis. The proposed novel multi-atlas fusion framework provides a more reliable MDD diagnostic technique. Experimental results show our approach outperforms both single- and multi-atlas-based methods, demonstrating its effectiveness in advancing MDD diagnosis.
Collapse
|
2
|
Zhang Y, Xue L, Zhang S, Yang J, Zhang Q, Wang M, Wang L, Zhang M, Jiang J, Li Y. A novel spatiotemporal graph convolutional network framework for functional connectivity biomarkers identification of Alzheimer's disease. Alzheimers Res Ther 2024; 16:60. [PMID: 38481280 PMCID: PMC10938710 DOI: 10.1186/s13195-024-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Functional connectivity (FC) biomarkers play a crucial role in the early diagnosis and mechanistic study of Alzheimer's disease (AD). However, the identification of effective FC biomarkers remains challenging. In this study, we introduce a novel approach, the spatiotemporal graph convolutional network (ST-GCN) combined with the gradient-based class activation mapping (Grad-CAM) model (STGC-GCAM), to effectively identify FC biomarkers for AD. METHODS This multi-center cross-racial retrospective study involved 2,272 participants, including 1,105 cognitively normal (CN) subjects, 790 mild cognitive impairment (MCI) individuals, and 377 AD patients. All participants underwent functional magnetic resonance imaging (fMRI) and T1-weighted MRI scans. In this study, firstly, we optimized the STGC-GCAM model to enhance classification accuracy. Secondly, we identified novel AD-associated biomarkers using the optimized model. Thirdly, we validated the imaging biomarkers using Kaplan-Meier analysis. Lastly, we performed correlation analysis and causal mediation analysis to confirm the physiological significance of the identified biomarkers. RESULTS The STGC-GCAM model demonstrated great classification performance (The average area under the curve (AUC) values for different categories were: CN vs MCI = 0.98, CN vs AD = 0.95, MCI vs AD = 0.96, stable MCI vs progressive MCI = 0.79). Notably, the model identified specific brain regions, including the sensorimotor network (SMN), visual network (VN), and default mode network (DMN), as key differentiators between patients and CN individuals. These brain regions exhibited significant associations with the severity of cognitive impairment (p < 0.05). Moreover, the topological features of important brain regions demonstrated excellent predictive capability for the conversion from MCI to AD (Hazard ratio = 3.885, p < 0.001). Additionally, our findings revealed that the topological features of these brain regions mediated the impact of amyloid beta (Aβ) deposition (bootstrapped average causal mediation effect: β = -0.01 [-0.025, 0.00], p < 0.001) and brain glucose metabolism (bootstrapped average causal mediation effect: β = -0.02 [-0.04, -0.001], p < 0.001) on cognitive status. CONCLUSIONS This study presents the STGC-GCAM framework, which identifies FC biomarkers using a large multi-site fMRI dataset.
Collapse
Affiliation(s)
- Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| | - Le Xue
- Department of Nuclear Medicine, the Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Shuoyan Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| | - Jiacheng Yang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qi Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mingkai Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yunxia Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, Pudong, China.
| |
Collapse
|
3
|
Zhang S, Yang J, Zhang Y, Zhong J, Hu W, Li C, Jiang J. The Combination of a Graph Neural Network Technique and Brain Imaging to Diagnose Neurological Disorders: A Review and Outlook. Brain Sci 2023; 13:1462. [PMID: 37891830 PMCID: PMC10605282 DOI: 10.3390/brainsci13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neurological disorders (NDs), such as Alzheimer's disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.
Collapse
Affiliation(s)
- Shuoyan Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiacheng Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiayi Zhong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chenyang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiehui Jiang
- Shanghai Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Peng L, Wang N, Xu J, Zhu X, Li X. GATE: Graph CCA for Temporal Self-Supervised Learning for Label-Efficient fMRI Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:391-402. [PMID: 36018878 DOI: 10.1109/tmi.2022.3201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we focus on the challenging task, neuro-disease classification, using functional magnetic resonance imaging (fMRI). In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success. However, these achievements are inseparable from abundant labeled data and sensitive to spurious signals. To improve fMRI representation learning and classification under a label-efficient setting, we propose a novel and theory-driven self-supervised learning (SSL) framework on GCNs, namely Graph CCA for Temporal sElf-supervised learning on fMRI analysis (GATE). Concretely, it is demanding to design a suitable and effective SSL strategy to extract formation and robust features for fMRI. To this end, we investigate several new graph augmentation strategies from fMRI dynamic functional connectives (FC) for SSL training. Further, we leverage canonical-correlation analysis (CCA) on different temporal embeddings and present the theoretical implications. Consequently, this yields a novel two-step GCN learning procedure comprised of (i) SSL on an unlabeled fMRI population graph and (ii) fine-tuning on a small labeled fMRI dataset for a classification task. Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis. Our code is available at https://github.com/LarryUESTC/GATE.
Collapse
|
5
|
Zhang L, Pang M, Liu X, Hao X, Wang M, Xie C, Zhang Z, Yuan Y, Zhang D. Incorporating multi-stage diagnosis status to mine associations between genetic risk variants and the multi-modality phenotype network in major depressive disorder. Front Psychiatry 2023; 14:1139451. [PMID: 36937715 PMCID: PMC10017727 DOI: 10.3389/fpsyt.2023.1139451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Depression (major depressive disorder, MDD) is a common and serious medical illness. Globally, it is estimated that 5% of adults suffer from depression. Recently, imaging genetics receives growing attention and become a powerful strategy for discoverying the associations between genetic variants (e.g., single-nucleotide polymorphisms, SNPs) and multi-modality brain imaging data. However, most of the existing MDD imaging genetic research studies conducted by clinicians usually utilize simple statistical analysis methods and only consider single-modality brain imaging, which are limited in the deeper discovery of the mechanistic understanding of MDD. It is therefore imperative to utilize a powerful and efficient technology to fully explore associations between genetic variants and multi-modality brain imaging. In this study, we developed a novel imaging genetic association framework to mine the multi-modality phenotype network between genetic risk variants and multi-stage diagnosis status. Specifically, the multi-modality phenotype network consists of voxel node features and connectivity edge features from structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI). Thereafter, an association model based on multi-task learning strategy was adopted to fully explore the relationship between the MDD risk SNP and the multi-modality phenotype network. The multi-stage diagnosis status was introduced to further mine the relation among the multiple modalities of different subjects. A multi-modality brain imaging data and genotype data were collected by us from two hospitals. The experimental results not only demonstrate the effectiveness of our proposed method but also identify some consistent and stable brain regions of interest (ROIs) biomarkers from the node and edge features of multi-modality phenotype network. Moreover, four new and potential risk SNPs associated with MDD were discovered.
Collapse
Affiliation(s)
- Li Zhang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- *Correspondence: Li Zhang
| | - Mengqian Pang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Meiling Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatic and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Yonggui Yuan
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Daoqiang Zhang
| |
Collapse
|
6
|
Chu Y, Ren H, Qiao L, Liu M. Resting-State Functional MRI Adaptation with Attention Graph Convolution Network for Brain Disorder Identification. Brain Sci 2022; 12:1413. [PMID: 36291346 PMCID: PMC9599902 DOI: 10.3390/brainsci12101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Multi-site resting-state functional magnetic resonance imaging (rs-fMRI) data can facilitate learning-based approaches to train reliable models on more data. However, significant data heterogeneity between imaging sites, caused by different scanners or protocols, can negatively impact the generalization ability of learned models. In addition, previous studies have shown that graph convolution neural networks (GCNs) are effective in mining fMRI biomarkers. However, they generally ignore the potentially different contributions of brain regions- of-interest (ROIs) to automated disease diagnosis/prognosis. In this work, we propose a multi-site rs-fMRI adaptation framework with attention GCN (A2GCN) for brain disorder identification. Specifically, the proposed A2GCN consists of three major components: (1) a node representation learning module based on GCN to extract rs-fMRI features from functional connectivity networks, (2) a node attention mechanism module to capture the contributions of ROIs, and (3) a domain adaptation module to alleviate the differences in data distribution between sites through the constraint of mean absolute error and covariance. The A2GCN not only reduces data heterogeneity across sites, but also improves the interpretability of the learning algorithm by exploring important ROIs. Experimental results on the public ABIDE database demonstrate that our method achieves remarkable performance in fMRI-based recognition of autism spectrum disorders.
Collapse
Affiliation(s)
- Ying Chu
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Haonan Ren
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Wang D, Wu Q, Hong D. Extracting default mode network based on graph neural network for resting state fMRI study. FRONTIERS IN NEUROIMAGING 2022; 1:963125. [PMID: 37555154 PMCID: PMC10406295 DOI: 10.3389/fnimg.2022.963125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 08/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI)-based study of functional connections in the brain has been highlighted by numerous human and animal studies recently, which have provided significant information to explain a wide range of pathological conditions and behavioral characteristics. In this paper, we propose the use of a graph neural network, a deep learning technique called graphSAGE, to investigate resting state fMRI (rs-fMRI) and extract the default mode network (DMN). Comparing typical methods such as seed-based correlation, independent component analysis, and dictionary learning, real data experiment results showed that the graphSAGE is more robust, reliable, and defines a clearer region of interests. In addition, graphSAGE requires fewer and more relaxed assumptions, and considers the single subject analysis and group subjects analysis simultaneously.
Collapse
Affiliation(s)
| | | | - Don Hong
- Program of Computational and Data Science, Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
8
|
Guo X, Tinaz S, Dvornek NC. Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network. FRONTIERS IN NEUROIMAGING 2022; 1:952084. [PMID: 37555151 PMCID: PMC10406199 DOI: 10.3389/fnimg.2022.952084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 08/10/2023]
Abstract
Parkinson's disease (PD) is a common and complex neurodegenerative disorder with five stages on the Hoehn and Yahr scaling. Characterizing brain function alterations with progression of early stage disease would support accurate disease staging, development of new therapies, and objective monitoring of disease progression or treatment response. Functional magnetic resonance imaging (fMRI) is a promising tool in revealing functional connectivity (FC) differences and developing biomarkers in PD. While fMRI and FC data have been utilized for diagnosis of PD through application of machine learning approaches such as support vector machine and logistic regression, the characterization of FC changes in early-stage PD has not been investigated. Given the complexity and non-linearity of fMRI data, we propose the use of a long short-term memory (LSTM) network to distinguish the early stages of PD and understand related functional brain changes. The study included 84 subjects (56 in stage 2 and 28 in stage 1) from the Parkinson's Progression Markers Initiative (PPMI), the largest-available public PD dataset. Under a repeated 10-fold stratified cross-validation, the LSTM model reached an accuracy of 71.63%, 13.52% higher than the best traditional machine learning method and 11.56% higher than a CNN model, indicating significantly better robustness and accuracy compared with other machine learning classifiers. Finally, we used the learned LSTM model weights to select the top brain regions that contributed to model prediction and performed FC analyses to characterize functional changes with disease stage and motor impairment to gain better insight into the brain mechanisms of PD.
Collapse
Affiliation(s)
- Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Nicha C. Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| |
Collapse
|