1
|
Ahmed S, van Zalm P, Rudmann EA, Leone M, Keller K, Branda JA, Steen J, Mukerji SS, Steen H. Using CSF Proteomics to Investigate Herpesvirus Infections of the Central Nervous System. Viruses 2022; 14:2757. [PMID: 36560759 PMCID: PMC9780940 DOI: 10.3390/v14122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses have complex mechanisms enabling infection of the human CNS and evasion of the immune system, allowing for indefinite latency in the host. Herpesvirus infections can cause severe complications of the central nervous system (CNS). Here, we provide a novel characterization of cerebrospinal fluid (CSF) proteomes from patients with meningitis or encephalitis caused by human herpes simplex virus 1 (HSV-1), which is the most prevalent human herpesvirus associated with the most severe morbidity. The CSF proteome was compared with those from patients with meningitis or encephalitis due to human herpes simplex virus 2 (HSV-2) or varicella-zoster virus (VZV, also known as human herpesvirus 3) infections. Virus-specific differences in CSF proteomes, most notably elevated 14-3-3 family proteins and calprotectin (i.e., S100-A8 and S100-A9), were observed in HSV-1 compared to HSV-2 and VZV samples, while metabolic pathways related to cellular and small molecule metabolism were downregulated in HSV-1 infection. Our analyses show the feasibility of developing CNS proteomic signatures of the host response in alpha herpes infections, which is paramount for targeted studies investigating the pathophysiology driving virus-associated neurological disorders, developing biomarkers of morbidity, and generating personalized therapeutic strategies.
Collapse
Affiliation(s)
- Saima Ahmed
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick van Zalm
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily A. Rudmann
- Neuroimmunology and Neuro-Infectious Diseases Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Leone
- Neuroimmunology and Neuro-Infectious Diseases Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiana Keller
- Neuroimmunology and Neuro-Infectious Diseases Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John A. Branda
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Judith Steen
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shibani S. Mukerji
- Neuroimmunology and Neuro-Infectious Diseases Division, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Precision Vaccines Program and Neurobiology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Dayon L, Cominetti O, Affolter M. Proteomics of Human Biological Fluids for Biomarker Discoveries: Technical Advances and Recent Applications. Expert Rev Proteomics 2022; 19:131-151. [PMID: 35466824 DOI: 10.1080/14789450.2022.2070477] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biological fluids are routine samples for diagnostic testing and monitoring. Blood samples are typically measured because of their moderate collection invasiveness and high information content on health and disease. Several body fluids, such as cerebrospinal fluid (CSF), are also studied and suited to specific pathologies. Over the last two decades proteomics has quested to identify protein biomarkers but with limited success. Recent technologies and refined pipelines have accelerated the profiling of human biological fluids. AREAS COVERED We review proteomic technologies for the identification of biomarkers. Those are based on antibodies/aptamers arrays or mass spectrometry (MS), but new ones are emerging. Advances in scalability and throughput have allowed to better design studies and cope with the limited sample size that had until now prevailed due to technological constraints. With these enablers, plasma/serum, CSF, saliva, tears, urine, and milk proteomes have been further profiled; we provide a non-exhaustive picture of some recent highlights (mainly covering literature from last five years in the Scopus database) using MS-based proteomics. EXPERT OPINION While proteomics has been in the shadow of genomics for years, proteomic tools and methodologies have reached a certain maturity. They are better suited to discover innovative and robust biofluid biomarkers.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| |
Collapse
|