1
|
Ruby JG, Smith M, Buffenstein R. Five years later, with double the demographic data, naked mole-rat mortality rates continue to defy Gompertzian laws by not increasing with age. GeroScience 2024; 46:5321-5341. [PMID: 38773057 PMCID: PMC11336006 DOI: 10.1007/s11357-024-01201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is a mouse-sized rodent species, notable for its eusociality and long lifespan. Previously, we reported that demographic aging, i.e., the exponential increase of mortality hazard that accompanies advancing age in mammals and other organisms, does not occur in naked mole-rats (Ruby et al., 2018), a finding that has potential implications for human healthy aging. The demographic data supporting that conclusion had taken over three decades to accumulate, starting with the original rearing of H. glaber in captivity. This finding was controversial since many of the animals in that study were relatively young. In the 5 years following that study, we have doubled our quantity of demographic data. Here, we re-evaluated our prior conclusions in light of these new data and found them to be not only supported but indeed strengthened. We additionally provided insight into the social dynamics of captive H. glaber with data and analyses of body weight and colony size versus mortality. Finally, we provide a phylogenetically proximal comparator in the form of lifespan data from our Damaraland mole-rat (Fukomys damarensis) colony and demographic meta-analysis of those data along with published data from Ansell's mole-rat (Fukomys anselli). We found Fukomys mortality hazard to increase gradually with age, an observation with inferences on the evolution of exceptional lifespan among mole-rats and the ecological factors that may have accompanied that evolution.
Collapse
Affiliation(s)
- J Graham Ruby
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Megan Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
- Department of Biological Sciences, University of Illinois, Chicago 845 W Taylor, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
Ojaghi M, Pamenter ME. Hypoxia impairs blood glucose homeostasis in naked mole-rat adult subordinates but not queens. J Exp Biol 2024; 227:jeb247537. [PMID: 38680085 PMCID: PMC11166464 DOI: 10.1242/jeb.247537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and metabolize only carbohydrates in hypoxia. Glucose is the primary building block of dietary carbohydrates, but how blood glucose is regulated during hypoxia has not been explored in NMRs. We hypothesized that NMRs mobilize glucose stores to support anaerobic energy metabolism in hypoxia. To test this, we treated newborn, juvenile and adult (subordinate and queen) NMRs in normoxia (21% O2) or hypoxia (7, 5 or 3% O2), while measuring metabolic rate, body temperature and blood [glucose]. We also challenged animals with glucose, insulin or insulin-like growth factor-1 (IGF-1) injections and measured the rate of glucose clearance in normoxia and hypoxia. We found that: (1) blood [glucose] increases in moderate hypoxia in queens and pups, but only in severe hypoxia in adult subordinates and juveniles; (2) glucose tolerance is similar between developmental stages in normoxia, but glucose clearance times are 2- to 3-fold longer in juveniles and subordinates than in queens or pups in hypoxia; and (3) reoxygenation accelerates glucose clearance in hypoxic subordinate adults. Mechanistically, (4) insulin and IGF-1 reduce blood [glucose] in subordinates in both normoxia but only IGF-1 impacts blood [glucose] in hypoxic queens. Our results indicate that insulin signaling is impaired by hypoxia in NMRs, but that queens utilize IGF-1 to overcome this limitation and effectively regulate blood glucose in hypoxia. This suggests that sexual maturation impacts blood glucose handling in hypoxic NMR queens, which may allow queens to spend longer periods of time in hypoxic nest chambers.
Collapse
Affiliation(s)
- Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
3
|
Majelantle TL, Ganswindt A, Hart DW, Hagenah N, Ganswindt SB, Bennett NC. The dissection of a despotic society: exploration, dominance and hormonal traits. Proc Biol Sci 2024; 291:20240371. [PMID: 38714210 PMCID: PMC11095815 DOI: 10.1098/rspb.2024.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 05/09/2024] Open
Abstract
Naked mole-rats (Heterocephalus glaber) live in large colonies with one breeding female (queen), one to three breeding males (BMs) and the remainder are non-reproductive subordinates. The animals have a linear dominance rank with the breeders at the top of the hierarchy. We investigated how dominance rank in naked mole-rats differs with exploration (the propensity to explore a novel environment) and related endocrine markers. Exploration behaviour, faecal progestagen metabolite (fPM), faecal glucocorticoid metabolite (fGCM), faecal androgen metabolite (fAM) and plasma prolactin concentrations were quantified in breeding, high-, middle- and low-ranked females and males from five naked mole-rat colonies. There were no significant differences between the dominance rank and exploration behaviour. Interestingly, the queens and high-ranking females had higher fGCM and fAM concentrations compared with middle- and low-ranked females. The queens had significantly higher fPM concentrations than all other ranked females, since they are responsible for procreation. In the males, the BMs had higher fGCM concentrations compared with high- and low-ranked males. In addition, BMs and middle-ranking males had overall higher prolactin levels than all other ranked males, which could be linked to cooperative care. Overall, the results suggest that physiological reproductive suppression is linked to high dominance rank.
Collapse
Affiliation(s)
- Tshepiso Lesedi Majelantle
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 400364, South Africa
| | - Andre Ganswindt
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 400364, South Africa
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 400364, South Africa
| | - Nicole Hagenah
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 400364, South Africa
| | - Stefanie Birgit Ganswindt
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 400364, South Africa
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 400364, South Africa
| |
Collapse
|
4
|
Abstract
Early life experiences can have an enduring impact on the brain and behavior, with implications for stress reactivity, cognition, and social behavior. In particular, the neural systems that contribute to the expression of social behavior are altered by early life social environments. However, paradigms that have been used to alter the social environment during development have typically focused on exposure to stress, adversity, and deprivation of species-typical social stimulation. Here, we explore whether complex social environments can shape the development of complex social behavior. We describe lab-based paradigms for studying early life social complexity in rodents that are generally focused on enriching the social and sensory experiences of the neonatal and juvenile periods of development. The impact of these experiences on social behavior and neuroplasticity is highlighted. Finally, we discuss the degree to which our current approaches for studying social behavior outcomes give insight into "complex" social behavior and how social complexity can be better integrated into lab-based methodologies.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Park TJ, Reznick J. Extreme Physiology Extreme Tolerance to Hypoxia, Hypercapnia, and Pain in the Naked Mole-Rat. J Muscle Res Cell Motil 2023; 44:61-72. [PMID: 35854159 PMCID: PMC10329625 DOI: 10.1007/s10974-022-09623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/04/2022] [Indexed: 10/17/2022]
Abstract
Challenging environmental conditions can drive the evolution of extreme physiological traits. The naked mole-rat has evolved to survive and thrive in a low oxygen, high carbon dioxide environment that would be deadly to humans and most other mammals. The naked mole-rat's lifestyle is unusual in that this species combines subterranean living and living in large, social groups of up to 300 + individuals. Many respiring animals in a closed environment can lead to depletion of oxygen (hypoxia) and accumulation of carbon dioxide (hypercapnia). Naked mole-rats display a variety of physiological traits that negate the adverse effects of living in this atmosphere. For hypoxia tolerance, naked mole-rats have a low resting metabolism, high affinity hemoglobin, intrinsic brain tolerance, the ability to use fructose for anaerobic glycolysis, and the ability to enter a low energy, suspended animation-like state. For hypercapnia tolerance, these animals have a mutation in a voltage gated sodium channel that effectively eliminates neuronal responses to tissue acidosis. In other mammals, acidosis from exposure to high concentrations of carbon dioxide induces pain and pulmonary edema. Understanding these mechanisms of extreme physiology is not only inherently interesting, but it may lead to biomedical breakthroughs in research on heart attacks, strokes, and pain pathologies.
Collapse
Affiliation(s)
- Thomas J Park
- Department of Biological Sciences and Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Amoroso VG, Zhao A, Vargas I, Park TJ. Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain. Animals (Basel) 2023; 13:ani13050819. [PMID: 36899677 PMCID: PMC10000161 DOI: 10.3390/ani13050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Naked mole-rats (Heterocephalus glaber) are very unusual among subterranean mammals in that they live in large colonies and are extremely social, spending large amounts of time gathered together in underground nests more than a meter below the surface. Many respiring individuals resting in deep, poorly ventilated nests deplete the oxygen supply and increase the concentration of carbon dioxide. Consistent with living in that atmosphere, naked mole-rats tolerate levels of low oxygen and high carbon dioxide that are deadly to most surface-dwelling mammals. Naked mole-rats appear to have evolved a number of remarkable adaptations to be able to thrive in this harsh atmosphere. In order to successfully survive low oxygen atmospheres, they conserve energy utilization by reducing the physiological activity of all organs, manifest by reduced heart rate and brain activity. Amazingly, they resort to the anaerobic metabolism of fructose rather than glucose as a fuel to generate energy when challenged by anoxia. Similarly, high carbon dioxide atmospheres normally cause tissue acidosis, while naked mole-rats have a genetic mutation preventing both acid-induced pain and pulmonary edema. Together, these putative adaptations and the tolerances they provide make the naked mole-rat an important model for studying a host of biomedical challenges.
Collapse
Affiliation(s)
- Vince G Amoroso
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aishi Zhao
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Isabel Vargas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Edwards PD, Toor I, Holmes MM. The Curious Case of the Naked Mole-Rat: How Extreme Social and Reproductive Adaptations Might Influence Sex Differences in the Brain. Curr Top Behav Neurosci 2023; 62:47-70. [PMID: 35301704 DOI: 10.1007/7854_2022_310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research in the neurobiology of sex differences is inherently influenced by the study species that are used. Some traditional animal research models, such as rats and mice, show certain sex differences in the brain that have been foundational to neurobiological research. However, subsequent work has demonstrated that these differences are not always generalizable, especially to species with different social structures and sex-associated roles or behaviors. One such example is the naked mole-rat (Heterocephalus glaber), which has an unusual social structure among mammals. Naked mole-rats live in large groups where reproduction is restricted to a dominant female, called the "queen," and often only one breeding male. All other animals in the group, the "subordinates," are socially suppressed from reproduction and remain in a prepubescent state as adults, unless they are removed from the presence of the queen. These subordinates show little to no sex differences in external morphology, neural morphology, or behavior. However, there are a suite of neurobiological differences between subordinate and breeding naked mole-rats. After naked mole-rats attain breeding status, many of the classically sexually differentiated brain regions increase in volume (paraventricular nucleus, medial amygdala, bed nucleus of the stria terminalis). There are additionally social status differences in sex hormone receptor expression in the brain, as well as other changes in gene expression, some of which also show sex differences - though not always in the predicted direction based on other rodent studies. Data from naked mole-rats show that it is critical to consider the evolved social structure of a species when studying sex differences in the brain.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ilapreet Toor
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
8
|
Aggression, Boldness, and Exploration Personality Traits in the Subterranean Naked Mole-Rat ( Heterocephalus glaber) Disperser Morphs. Animals (Basel) 2022; 12:ani12223083. [PMID: 36428311 PMCID: PMC9686569 DOI: 10.3390/ani12223083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Animal personality traits (consistent behavioral differences between individuals in their behavior across time and/or situation) affect individual fitness through facets, such as dispersal. In eusocial naked mole-rat (Heterocephalus glaber) colonies, a disperser morph may arise with distinct morphological, behavioral, and physiological characteristics. This study aimed to quantify the personality traits of a cohort of disperser morphs of naked mole-rat (NMR). Behavioral tests were performed on twelve disperser morphs (six males and six females) in an observation tunnel system that was novel and unfamiliar. Novel stimuli (fresh snakeskin, tissue paper, and conspecific of the same sex) were introduced for fifteen minutes, and the behavioral acts of the individual were recorded. A total of 30 behaviors were noted during the behavioral tests of which eight were used to quantify aggression, boldness, and exploration. The NMR disperser morphs showed consistent individual differences in boldness, and exploration across time and test, indicating a distinct personality. In addition, new naked mole-rat responses including disturbance behaviors; confront, barricade, and stay-away, were recorded. Further investigations into the relationships between animal personality traits and social hierarchy position in entire colonies are needed for more informative results as we further investigate the role of personality in cooperatively breeding societies.
Collapse
|
9
|
Faykoo-Martinez M, Collins T, Peragine D, Malik M, Javed F, Kolisnyk M, Ziolkowski J, Jeewa I, Cheng AH, Lowden C, Mascarenhas B, Cheng HYM, Holmes MM. Protracted neuronal maturation in a long-lived, highly social rodent. PLoS One 2022; 17:e0273098. [PMID: 36107951 PMCID: PMC9477366 DOI: 10.1371/journal.pone.0273098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increasingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we test the hypothesis that neuronal maturation is extended in this long-lived rodent. We characterize cell proliferation and neuronal maturation in established rodent neurogenic regions over 12 months following seven days of consecutive BrdU injection. Given that naked mole-rats are eusocial (high reproductive skew where only a few socially-dominant individuals reproduce), we also looked at proliferation in brain regions relevant to the social-decision making network. Finally, we measured co-expression of EdU (newly-born cells), DCX (immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neuronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as the main source of adult cell proliferation and suggests conservation of the rostral migratory stream in this species. Our profiling of socially-relevant brain regions suggests that future work which manipulates environmental context can unveil how newly-born cells integrate into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal maturation sits at the intersection of rodents and long-lived, non-rodent species: while neurons can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal neurogenic levels are low (like long-lived species). These data establish a timeline for future investigations of longevity- and socially-related manipulations of naked mole-rat adult neurogenesis.
Collapse
Affiliation(s)
| | - Troy Collins
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Diana Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Manahil Malik
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Fiza Javed
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Matthew Kolisnyk
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Justine Ziolkowski
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Imaan Jeewa
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Arthur H. Cheng
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christopher Lowden
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Brittany Mascarenhas
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M. Holmes
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Ragland NH, Compo NR, Wiltshire N, Shepard A, Troutman S, Kissil JL, Engelman RW. Housing and Husbandry Alternatives for Naked Mole Rat Colonies Used in Research Settings. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:412-418. [PMID: 35944976 PMCID: PMC9536831 DOI: 10.30802/aalas-jaalas-22-000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Naked mole rats (Heterocephalus glaber) are a unique rodent species originating in Africa and are increasingly being used in research. Their needs and characteristics differ from those of other rodents used in research. Unique housing systems are necessary to address the special macro- and microenvironmental requirements of NMRs. Naked mole rats are one of the 2 known eusocial mammalian species, are extremely long-living, are active burrowers, and are accustomed to a subterranean environment. Unlike typical rats and mice, naked mole rats need specific, unique housing systems that mimic their natural subterranean environment to support health and longevity. Here we provide an overview of naked mole rats and a housing method that can be used in research settings.
Collapse
Affiliation(s)
- Natalie H Ragland
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis,Corresponding author.
| | - Nicole R Compo
- Department of Comparative Medicine, University of South Florida, Tampa, Florida,,H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Norman Wiltshire
- Department of Comparative Medicine, University of South Florida, Tampa, Florida,,H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Alyssa Shepard
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Scott Troutman
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Joseph L Kissil
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Robert W Engelman
- Department of Comparative Medicine, University of South Florida, Tampa, Florida,,H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
11
|
Fitzpatrick CR, Toor I, Holmes MM. Colony but not social phenotype or status structures the gut bacteria of a eusocial mammal. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Toor I, Maynard R, Peng X, Beery AK, Holmes MM. Naked Mole-Rat Social Phenotypes Vary in Investigative and Aggressive Behavior in a Laboratory Partner Preference Paradigm. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.860885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we employed the partner preference test (PPT) to examine how naked mole-rat non-breeding individuals of different behavioral phenotypes make social decisions. Naked mole-rats from six colonies were classified into three behavioral phenotypes (soldiers, dispersers, and workers) using a battery of behavioral tests. They then participated in a 3 h long PPT, where they could freely interact with a tethered familiar or tethered unfamiliar conspecific. By comparing the three behavioral phenotypes, we tested the hypothesis that the PPT can be used to interrogate social decision-making in this species, revealing individual differences in behavior that are consistent with discrete social phenotypes. We also tested whether a shorter, 10 min version of the paradigm is sufficient to capture group differences in behavior. Overall, soldiers had higher aggression scores toward unfamiliar conspecifics than both workers and dispersers at the 10 min and 3 h comparison times. At the 10 min comparison time, workers showed a stronger preference for the familiar animal’s chamber, as well as for investigating the familiar conspecific, compared to both dispersers and soldiers. At the 3 h time point, no phenotype differences were seen with chamber or investigation preference scores. Overall, all phenotypes spent more time in chambers with another animal vs. being alone. Use of the PPT in a comparative context has demonstrated that the test identifies species and group differences in affiliative and aggressive behavior toward familiar and unfamiliar animals, revealing individual differences in social decision-making and, importantly, capturing aspects of species-specific social organization seen in nature.
Collapse
|
13
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
Affiliation(s)
| | - Vincent Amoroso
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Blazej Andziak
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | | | - Jorge Azpurua
- Department of AnesthesiologyStony Brook University101 Nicolls RoadStony BrookNY11794U.S.A.
| | - Alison J. Barker
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoria0002South Africa
| | - Miguel A. Brieño‐Enríquez
- Department of Obstetrics, Gynecology & Reproductive MedicineMagee‐Womens Research Institute204 Craft AvenuePittsburghPA15213U.S.A.
| | - Gary N. Bronner
- Department Biological SciencesRondeboschCape Town7701South Africa
| | - Clive Coen
- Reproductive Neurobiology, Division of Women's HealthSchool of Medicine, King's College LondonWestminster Bridge RoadLondonSE1 7EHU.K.
| | - Martha A. Delaney
- Zoological Pathology ProgramUniversity of Illinois3505 Veterinary Medicine Basic Sciences Building, 2001 S Lincoln AvenueUrbanaIL6180U.S.A.
| | - Christine M. Dengler‐Crish
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272U.S.A.
| | - Yael H. Edrey
- Northwest Vista College3535 N. Ellison DriveSan AntonioTX78251U.S.A.
| | - Chris G. Faulkes
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSU.K.
| | - Daniel Frankel
- School of EngineeringNewcastle UniversityMerz CourtNewcastle Upon TyneNE1 7RUU.K.
| | - Gerard Friedlander
- Université Paris DescartesFaculté de Médecine12 Rue de l'École de MédecineParis5006France
| | - Patrick A. Gibney
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Vera Gorbunova
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Christopher Hine
- Cleveland ClinicLerner Research Institute9500 Euclid AvenueClevelandOH44195U.S.A.
| | - Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga3359 Mississauga Road NorthMississaugaONL5L 1C6Canada
| | | | - Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Cynthia Kenyon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Walid T. Khaled
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Joseph Kissil
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Samantha Lagestee
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - John Larson
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Amanda Lauer
- Department of OtolaryngologyJohns Hopkins School of MedicineBaltimoreMD21205U.S.A.
| | - Leonid A. Lavrenchenko
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Angela Lee
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Jonathan B. Levitt
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Gary R. Lewin
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | | | - TzuHua D. Lin
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Matthew J. Mason
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Dan McCloskey
- College of Staten Island in the City University of New York2800 Victory BlvdStaten IslandNY10314U.S.A.
| | - Mary McMahon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Vikram Narayan
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Kazuo Okanoya
- Department of Life SciencesThe University of Tokyo7‐3‐1 HongoTokyo153‐8902Japan
| | | | - Thomas J. Park
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Ned J. Place
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Katie Podshivalova
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Sonja J. Pyott
- Groningen Department of OtorhinolaryngologyUniversity Medical CenterPostbus 30.001GroningenRB9700The Netherlands
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University Hospital CologneJoseph‐Stelzmann‐Street 26Cologne50931Germany
| | - J. Graham Ruby
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center4939 Charles Katz Dr.San AntonioTX78229U.S.A.
| | - Joseph Santos‐Sacchi
- Department of NeuroscienceYale University School of Medicine200 South Frontage Road, SHM C‐303New HavenCT06510U.S.A.
| | - Diana K. Sarko
- Department of AnatomySchool of Medicine, Southern Illinois University975 S. NormalCarbondaleIL62901U.S.A.
| | - Andrei Seluanov
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Alyssa Shepard
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Megan Smith
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kenneth B. Storey
- Department of BiologyCarleton University1125 Colonel By DriveOttawaONK1S 5B6Canada
| | - Xiao Tian
- Department of Genetics – Blavatnik InstituteHarvard Medical School77 Avenue Louis PasteurBostonMA02115U.S.A.
| | - Emily N. Vice
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Mélanie Viltard
- Fondation pour la recherche en PhysiologieUniversité Catholique de LouvainClos Chapelle‐aux‐Champs 30Woluwe‐saint Lambert1200Belgium
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Ewa Wywial
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Masanori Yamakawa
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Elena D. Zemlemerova
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Michael Zions
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Ewan St. John Smith
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| |
Collapse
|