1
|
Zhao Y, Zhang Y, Li J, Zhang Y, Qu Y. The role of IGF2BP2 in macrophage-mediated NLRP3 inflammasome activation in the pathogenesis of dry AMD. Biol Direct 2025; 20:57. [PMID: 40264207 DOI: 10.1186/s13062-025-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/05/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Dry age-related macular degeneration (AMD) is a common chronic degenerative eye disease for which there is currently no effective treatment. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is a recently identified m6A reader that binds RNA and maintains its stability, thereby participating in various biological processes. However, its role in dry AMD remains unclear. METHODS In this study, we investigated the role of IGF2BP2 in macrophage NLRP3 inflammasomes using a sodium iodate-induced dry AMD model. RESULTS Our results demonstrated that IGF2BP2 is highly expressed in the retinal-choroidal tissue induced by sodium iodate, with its effects primarily occurring in macrophages. The loss of IGF2BP2 ameliorating dry AMD. Mechanistically, methylated NLRP3 transcripts were subsequently directly recognized by the specific m 6 A "reader", IGF2BP2, to prevent NLRP3 mRNA degradation. Furthermore, in in vivo experiments, to maintain the eye's "immune privilege", we employed mesoporous silica-based cell therapy to target and regulate macrophage IGF2BP2, providing a foundation for the evaluation and translation of therapies targeting this gene. CONCLUSION our study reveals that the molecular mechanism of dry AMD pathogenesis involves IGF2BP2-mediated NLRP3 inflammasome activation in macrophages, highlighting IGF2BP2 as a promising biomarker and therapeutic target for dry AMD treatment.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Geriatrics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Junfang Li
- Department of Geriatrics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Yifei Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, 250012, China.
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China.
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China.
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Larsen PP, Dinet V, Delcourt C, Helmer C, Linard M. Could Infectious Agents Play a Role in the Onset of Age-related Macular Degeneration? A Scoping Review. OPHTHALMOLOGY SCIENCE 2025; 5:100668. [PMID: 39906411 PMCID: PMC11791433 DOI: 10.1016/j.xops.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025]
Abstract
Topic This scoping review aims to summarize the current state of knowledge on the potential involvement of infections in age-related macular degeneration (AMD). Clinical relevance Age-related macular degeneration is a multifactorial disease and the leading cause of vision loss among older adults in developed countries. Clarifying whether certain infections participate in its onset or progression seems essential, given the potential implications for treatment and prevention. Methods Using the PubMed database, we searched for articles in English, published until June 1, 2023, whose title and/or abstract contained terms related to AMD and infections. All types of study design, infectious agents, AMD diagnostic methods, and AMD stages were considered. Articles dealing with the oral and gut microbiota were not included but we provide a brief summary of high-quality literature reviews recently published on the subject. Results Two investigators independently screened the 868 articles obtained by our algorithm and the reference lists of selected studies. In total, 40 articles were included, among which 30 on human data, 9 animal studies, 6 in vitro experiments, and 1 hypothesis paper (sometimes with several data types in the same article). Of these, 27 studies were published after 2010, highlighting a growing interest in recent years. A wide range of infectious agents has been investigated, including various microbiota (nasal, pharyngeal), 8 bacteria, 6 viral species, and 1 yeast. Among them, most have been investigated anecdotally. Only Chlamydia pneumoniae, Cytomegalovirus, and hepatitis B virus received more attention with 17, 6, and 4 studies, respectively. Numerous potential pathophysiological mechanisms have been discussed, including (1) an indirect role of infectious agents (i.e. a role of infections located distant from the eye, mainly through their interactions with the immune system) and (2) a direct role of some infectious agents implying potential infection of various cells types within AMD-related tissues. Conclusions Overall, this review highlights the diversity of possible interactions between infectious agents and AMD and suggests avenues of research to enrich the data currently available, which provide an insufficient level of evidence to conclude whether or not infectious agents are involved in this pathology. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Petra P. Larsen
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Virginie Dinet
- INSERM, Biologie des Maladies Cardiovasculaires, U1034, University of Bordeaux, Pessac, France
| | - Cécile Delcourt
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | | | - Morgane Linard
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| |
Collapse
|
3
|
Nair AP, Ghosh S, Babu VS, Praveen M, Xin Y, Sahu GR, Vaidya TA, Debnath J, Raja K, Gadde SGK, M B T, Shetty N, Saxena A, Shetty R, Hose S, Deshpande V, Chakrabarty K, Handa JT, Qian JJ, Sethu S, Sinha D, Ghosh A. Attenuated adenosine mediated immune-dampening increases natural killer cell activity in early age-related macular degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634301. [PMID: 39975064 PMCID: PMC11838234 DOI: 10.1101/2025.01.22.634301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Non-exudative age-related macular degeneration (AMD) involves retinal pigment epithelium (RPE) dysfunction and has been linked to altered intraocular immunity. Our investigation focuses on immune cell subsets and inflammation-associated factors in the eyes with early and intermediate AMD. We observed elevated levels of activated natural killer (NK) cells and interferon-γ, concurrent with reduced myeloid-derived suppressor cells (MDSCs) and adenosine in AMD eyes. Aqueous humor from AMD patients had diminished ability to dampen NK cell activation, an effect rescued by adenosine supplementation. The Cryba1 cKO mouse model recapitulated these immune alterations, and single-cell RNA-sequencing identified NK cell-related genes and NK cell-RPE interactions. Co-culture of activated NK cells with RPE cells induced barrier dysfunction and Gasdermin-E driven pyroptosis providing a functional link relevant to AMD. These findings suggest a double-hit model where elevated immune activation and loss of immune dampening mechanisms drive AMD progression. Resetting the intraocular immune balance may be a promising therapeutic strategy for managing early and intermediate AMD.
Collapse
Affiliation(s)
- Archana Padmanabhan Nair
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Sayan Ghosh
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishnu Suresh Babu
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Machiraju Praveen
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | - Ying Xin
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ganesh Ram Sahu
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | - Tanuja Arun Vaidya
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Jayasree Debnath
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | - Karthik Raja
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | | | | | - Naren Shetty
- Narayana Nethralaya, Bengaluru, Karnataka, India
| | | | - Rohit Shetty
- Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Stacey Hose
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vrushali Deshpande
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | - Koushik Chakrabarty
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | - James T. Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J. Jiang Qian
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| | - Debasish Sinha
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Netralaya Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Luo Y, Liu J, Feng W, Lin D, Chen M, Zheng H. Single-cell RNA Sequencing Identifies Natural Kill Cell-Related Transcription Factors Associated With Age-Related Macular Degeneration. Evol Bioinform Online 2024; 20:11769343241272413. [PMID: 39149137 PMCID: PMC11325330 DOI: 10.1177/11769343241272413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Background Age-related Macular Degeneration (AMD) poses a growing global health concern as the leading cause of central vision loss in elderly people. Objection This study focuses on unraveling the intricate involvement of Natural Killer (NK) cells in AMD, shedding light on their immune responses and cytokine regulatory roles. Methods Transcriptomic data from the Gene Expression Omnibus database were utilized, employing single-cell RNA-seq analysis. High-dimensional weighted gene co-expression network analysis (hdWGCNA) and single-cell regulatory network inference and clustering (SCENIC) analysis were applied to reveal the regulatory mechanisms of NK cells in early-stage AMD patients. Machine learning models, such as random forests and decision trees, were employed to screen hub genes and key transcription factors (TFs) associated with AMD. Results Distinct cell clusters were identified in the present study, especially the T/NK cluster, with a notable increase in NK cell abundance observed in AMD. Cell-cell communication analyses revealed altered interactions, particularly in NK cells, indicating their potential role in AMD pathogenesis. HdWGCNA highlighted the turquoise module, enriched in inflammation-related pathways, as significantly associated with AMD in NK cells. The SCENIC analysis identified key TFs in NK cell regulatory networks. The integration of hub genes and TFs identified CREM, FOXP1, IRF1, NFKB2, and USF2 as potential predictors for AMD through machine learning. Conclusion This comprehensive approach enhances our understanding of NK cell dynamics, signaling alterations, and potential predictive models for AMD. The identified TFs provide new avenues for molecular interventions and highlight the intricate relationship between NK cells and AMD pathogenesis. Overall, this study contributes valuable insights for advancing our understanding and management of AMD.
Collapse
Affiliation(s)
- Yili Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wangqiang Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Da Lin
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Yang TM, Huang WL, Yang CH, Yang CM, Ho TC, Chen TC, Lai TT, Hsieh YT. Association between non-steroidal anti-inflammatory drug use and development of age-related macular degeneration-A 10-year retrospective cohort study. J Formos Med Assoc 2024; 123:467-477. [PMID: 37858375 DOI: 10.1016/j.jfma.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE To analyze the associations between development of age-related macular degeneration (AMD) and regular use of aspirin or non-aspirin non-steroidal anti-inflammatory drugs (NA-NSAIDs). METHODS We retrospectively recruited individuals who received ≥28-day prescriptions of aspirin or NA-NSAIDs exclusively between 2008 and 2017 in one tertiary center as regular users. Non-regular users were free from regular use of any anti-inflammatory drugs and were matched to regular users in terms of age, sex, and visit date at a ratio of 1-4:1. The aspirin cohort included 36,771 regular users and 110,808 matched non-regular users, while the NA-NSAID cohort included 59,569 regular users and 179,732 matched non-regular users. Stratified multivariate Cox regression analyses with adjustment for systemic confounding factors were performed for the development of AMD and neovascular AMD. RESULTS In the aspirin cohort, the adjusted hazard ratios of aspirin use for AMD in the whole cohort, individuals without cardiovascular diseases (CVDs), and those with CVDs were 0.664, 0.618, and 0.702, respectively (P < 0.0001 for all), while those of aspirin use for neovascular AMD were 0.486, 0.313, and 0.584 (P < 0.05 for all), respectively. In the NA-NSAID cohort, regular use of NA-NSAIDs was associated with a decreased risk of AMD (hazard ratio = 0.823, P < 0.0001) and neovascular AMD (hazard ratio = 0.720, P = 0.040) only in people without arthritis. CONCLUSIONS Regular use of aspirin or NA-NSAIDs had protective effects on AMD and neovascular AMD. The effect of aspirin was observed in all patients, while the effect of NA-NSAIDs was observed only in people without arthritis.
Collapse
Affiliation(s)
- Tsung-Mu Yang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Department of Ophthalmology, National Taiwan University Biomedical Park Hospital, Hsinchu, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzyy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tso-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|
8
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
9
|
Ridley RB, Bowman BM, Lee J, Walsh E, Massengill MT, Lewin AS, Ildefonso CJ. Modulation of Retinal Inflammation Delays Degeneration in a Mouse Model of Geographic Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527757. [PMID: 36798403 PMCID: PMC9934704 DOI: 10.1101/2023.02.08.527757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advanced form of AMD, geographic atrophy, is associated with increased RPE oxidative stress and chronic inflammation. Here we evaluated the effects of delivering an anti-inflammatory viral gene by an AAV-vector in a mouse model of geographic atrophy. We measured changes in retinal function, structure, and morphology over nine months with electroretinography, optical coherence tomography, and fundoscopy, respectively. In addition, we used retinal tissue to quantify changes in markers of inflammation by multiplex ELISA, RT-qPCR, and immunofluorescence staining. Our AAV significantly delayed the loss of retinal function and structure and decreased retinal inflammation compared to the control AAV treatment. Our results suggest that modulating retinal inflammation could significantly slow the progression of geographic atrophy.
Collapse
|
10
|
Agrón E, Mares J, Chew EY, Keenan TDL. Adherence to a Mediterranean Diet and Geographic Atrophy Enlargement Rate: Age-Related Eye Disease Study 2 Report 29. Ophthalmol Retina 2022; 6:762-770. [PMID: 35381392 PMCID: PMC9464676 DOI: 10.1016/j.oret.2022.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/08/2023]
Abstract
PURPOSE To determine whether closer adherence to a Mediterranean diet was associated with altered speed of geographic atrophy (GA) enlargement. DESIGN Post hoc analysis of a cohort within the Age-Related Eye Disease Study 2. PARTICIPANTS The study included 1155 eyes (850 participants; mean age, 74.9 years) with GA at 2 or more visits. METHODS Geographic atrophy area was measured from color fundus photographs at annual visits. An alternative Mediterranean Diet index (aMedi) was calculated for each participant by food frequency questionnaire. Mixed-model regression of square root GA area was performed by aMedi. MAIN OUTCOME MEASURES Change in square root of GA area over time. RESULTS Over a mean follow-up of 3.1 years, the mean GA enlargement rate was 0.282 mm/year (95% confidence interval, 0.270-0.293). Enlargement was significantly slower in those with higher aMedi at 0.256 mm/year (0.236-0.276), 0.290 (0.268-0.311), and 0.298 (0.280-0.317; P = 0.008) for aMedi tertiles 3, 2, and 1, respectively. Of the 9 aMedi components considered separately, significant differences in enlargement rate were observed for 4 (whole fruit [P = 0.0004], red meat [P = 0.0002], alcohol [P = 0.006], and monounsaturated fatty acid to saturated fatty acid ratio ([MUFA:SFA] [P = 0.040]) but not for fish (P = 0.14). Enlargement was slower in those with higher whole fruit, lower red meat, moderate alcohol, and higher MUFA:SFA intake. In the 768 eyes with noncentral GA, aMedi was not associated with slower progression to central involvement: hazard ratios were 1.11 (0.83-1.48) and 0.95 (0.71-1.26) for tertiles 2 and 3, respectively. CONCLUSIONS A Mediterranean-type diet was associated with slower GA enlargement. Diet patterns like this may therefore lead to clinically meaningful delays in vision loss. Several components seemed to contribute most to this association in a pattern that differed from those most associated with decreased progression to GA. Hence, the Mediterranean diet is associated with protection against both faster progression to GA and faster enlargement of GA but for partially distinct reasons. These findings may help inform evidence-based dietary recommendations. Understanding the mechanisms responsible may provide insights into the underlying biology and lead to the development of nutritional supplements.
Collapse
Affiliation(s)
- Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie Mares
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
McLaughlin T, Medina A, Perkins J, Yera M, Wang JJ, Zhang SX. Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 2022; 17:25. [PMID: 35346303 PMCID: PMC8962104 DOI: 10.1186/s13024-022-00528-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. Method We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. Results and conclusion We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Andy Medina
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jacob Perkins
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Maria Yera
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA. .,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
12
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|