1
|
Goossen CJ, Kufner A, Dustin CM, Al Ghouleh I, Yuan S, Straub AC, Sembrat J, Baust JJ, Gomez D, Kračun D, Pagano PJ. Redox regulation of lung endothelial PERK, unfolded protein response (UPR) and proliferation via NOX1: Targeted inhibition as a potential therapy for PAH. Redox Biol 2025; 82:103554. [PMID: 40154102 PMCID: PMC11986987 DOI: 10.1016/j.redox.2025.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/01/2025] Open
Abstract
AIMS Reactive oxygen species (ROS) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH) and NADPH oxidases (NOXs) as sources of ROS are implicated in the development of the disease. We previously showed that NOX isozyme 1 (NOX1)-derived ROS contributes to pulmonary vascular endothelial cell (EC) proliferation in response to PAH triggers in vitro. However, whether and how NOX1 is involved in PAH in vivo have not been explored nor has NOX1 been examined as a viable and effective therapeutic disease target. METHODS AND RESULTS Herein, infusion of mice exposed to Sugen/hypoxia (10 % O2) with a specific NOX1 inhibitor, NOXA1ds, delivered via osmotic minipumps (i.p.), significantly suppressed pathological changes in hemodynamic parameters characteristic of PAH. Furthermore, lungs of human patients with idiopathic PAH (iPAH) and exploratory RNA-seq analysis of hypoxic human pulmonary ECs, in which NOX1 was suppressed, were probed. The findings showed a clear indication of NOX1 in the promotion of both protein disulfide isomerase (PDI) and the unfolded protein response (UPR; in particular, the PERK arm of the pathway including eIF2α and ATF4) leading to proliferation. In aggregate, these results are consistent with a causal role for NOX1 in the development of mouse and human PAH and reveal a novel and mechanistic pathway by which NOX1 activates the UPR response during EC proliferation. CONCLUSION NOX1 promotes phenotypic changes in ECs that are pivotal to proliferation and PAH through activation of the UPR. Taken together, our results are consistent with selective inhibition of NOX1 as a novel modality for attenuating PAH.
Collapse
Affiliation(s)
- Christian J Goossen
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alex Kufner
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shuai Yuan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jeffrey J Baust
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Deng X, Luo H, He J, Deng W, Wang D. Omentin-1 ameliorates pulmonary arterial hypertension by inhibiting endoplasmic reticulum stress through AMPKα signaling. Clin Exp Hypertens 2024; 46:2332695. [PMID: 38527024 DOI: 10.1080/10641963.2024.2332695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Endothelial dysfunction of the pulmonary artery contributes to hypoxia-induced pulmonary arterial hypertension (PAH). Omentin-1, as a novel adipocytokine, plays an important protective role against cardiovascular diseases. However, the effect and underlying mechanisms of omentin-1 against PAH remain unclear. METHODS PAH was induced in SD (Sprague & Dawley) rats via a low-oxygen chamber for 4 weeks. Hemodynamic evaluation was undertaken using a PowerLab data acquisition system, and histopathological analysis was stained with hematoxylin and eosin (H&E). Endothelial function of pulmonary artery was assessed using wire myography. RESULTS We found that omentin-1 significantly improved pulmonary endothelial function in rats exposed to hypoxia and attenuated PAH. Mechanistically, we found that omentin-1 increased phosphorylated 5'‑adenosine monophosphate‑activated protein kinase (p‑AMPK) level and reduced endoplasmic reticulum (ER) stress and increased NO production in pulmonary artery from rats exposed to hypoxia. However, the effect of omentin-1 was abolished by treatment with AMPK inhibitor (Compound C). CONCLUSIONS Our results reveal a protective effect of omentin-1 in PAH via inhibiting ER stress through AMPKα signaling and provide an agent with translational potential for the treatment of PAH.
Collapse
Affiliation(s)
- Xinyu Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Yan T, Nisar MF, Hu X, Chang J, Wang Y, Wu Y, Liu Z, Cai Y, Jia J, Xiao Y, Wan C. Pyrroloquinoline Quinone (PQQ): Its impact on human health and potential benefits: PQQ: Human health impacts and benefits. Curr Res Food Sci 2024; 9:100889. [PMID: 39513102 PMCID: PMC11541945 DOI: 10.1016/j.crfs.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Pyrroloquinoline Quinone (PQQ) is a redox-active quinone molecule with significant implications for human health. Originally identified as a bacterial cofactor, PQQ has since been lauded for its diverse biological and therapeutic activities. It serves as an essential cofactor for oxidative enzymes that are vital for mitochondrial function and ATP synthesis. PQQ exhibits superior antioxidant properties that protect against ROS-mediated oxidative stress, aging, neurodegenerative diseases, certain cancers, diabetes, and metabolic disorders. It also enhances cognitive abilities and reduces insulin sensitivity. PQQ's antioxidant nature helps mitigate oxidative stress, which is implicated in many diseases. It has been shown to target cancer cells selectively, suggesting its potential as a therapeutic agent. Clinical studies have indicated the potential benefits of PQQ supplementation, including improvements in cardiovascular health, cognitive function, weight management, insulin sensitivity, and the prevention of metabolic syndromes. The safety of PQQ has been established, with no reported toxicity or genotoxicity in various studies, and it is considered a safe nutritional supplement. Future research directions should focus on determining the optimal dosages of PQQ for specific health outcomes and assessing its long-term effectiveness and safety. The translation of PQQ research into clinical practice could offer new strategies for managing metabolic disorders, enhancing cognitive health, and potentially extending lifespan. In summary, PQQ is a promising molecule with broad potential health benefits, impacting human health from cellular metabolism to disease prevention and treatment, positioning it as a key player in nutritional science and public health.
Collapse
Affiliation(s)
- Tingdong Yan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Muhammad Farrukh Nisar
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Jieming Chang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yichen Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jia Jia
- Translational Medicine Center, Zhejiang Xinda Hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Yanming Xiao
- Hangzhou Hyproven Biopharm Co., Ltd., Hangzhou 311107, China
| | - Chunpeng Wan
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Correale M, Chirivì F, Bevere EML, Tricarico L, D’Alto M, Badagliacca R, Brunetti ND, Vizza CD, Ghio S. Endothelial Function in Pulmonary Arterial Hypertension: From Bench to Bedside. J Clin Med 2024; 13:2444. [PMID: 38673717 PMCID: PMC11051060 DOI: 10.3390/jcm13082444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Pulmonary arterial hypertension is a complex pathology whose etiology is still not completely well clarified. The pathogenesis of pulmonary arterial hypertension involves different molecular mechanisms, with endothelial dysfunction playing a central role in disease progression. Both individual genetic predispositions and environmental factors seem to contribute to its onset. To further understand the complex relationship between endothelial and pulmonary hypertension and try to contribute to the development of future therapies, we report a comprehensive and updated review on endothelial function in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Lucia Tricarico
- Cardiothoracic Department, Policlinico Riuniti University Hospital, 71100 Foggia, Italy;
| | - Michele D’Alto
- Department of Cardiology, A.O.R.N. dei Colli, Monaldi Hospital, University of Campania L. ‘Vanvitelli’, 80133 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Natale D. Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (F.C.); (E.M.L.B.); (N.D.B.)
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.B.); (C.D.V.)
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Hu L, Yu Y, Shen Y, Huang H, Lin D, Wang K, Yu Y, Li K, Cao Y, Wang Q, Sun X, Qiu Z, Wei D, Shen B, Chen J, Fulton D, Ji Y, Wang J, Chen F. Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages. Redox Biol 2023; 61:102638. [PMID: 36801705 PMCID: PMC9975317 DOI: 10.1016/j.redox.2023.102638] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by irreversible pulmonary vascular remodeling (PVR) that causes right ventricular failure and death. The early alternative activation of macrophages is a critical event in the development of PVR and PH, but the underlying mechanisms remain elusive. Previously we have shown that N6-methyladenosine (m6A) modifications of RNA contribute to phenotypic switching of pulmonary artery smooth muscle cells and PH. In the current study, we identify Ythdf2, an m6A reader, as an important regulator of pulmonary inflammation and redox regulation in PH. In a mouse model of PH, the protein expression of Ythdf2 was increased in alveolar macrophages (AMs) during the early stages of hypoxia. Mice with a myeloid specific knockout of Ythdf2 (Ythdf2Lyz2 Cre) were protected from PH with attenuated right ventricular hypertrophy and PVR compared to control mice and this was accompanied by decreased macrophage polarization and oxidative stress. In the absence of Ythdf2, heme oxygenase 1 (Hmox1) mRNA and protein expression were significantly elevated in hypoxic AMs. Mechanistically, Ythdf2 promoted the degradation of Hmox1 mRNA in a m6A dependent manner. Furthermore, an inhibitor of Hmox1 promoted macrophage alternative activation, and reversed the protection from PH seen in Ythdf2Lyz2 Cre mice under hypoxic exposure. Together, our data reveal a novel mechanism linking m6A RNA modification with changes in macrophage phenotype, inflammation and oxidative stress in PH, and identify Hmox1 as a downstream target of Ythdf2, suggesting that Ythdf2 may be a therapeutic target in PH.
Collapse
Affiliation(s)
- Li Hu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyao Shen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Donghai Lin
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Sun
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wei
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|