1
|
Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray. Proc Natl Acad Sci U S A 2021; 118:1922586118. [PMID: 34108238 DOI: 10.1073/pnas.1922586118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.
Collapse
|
2
|
Kawa L, Arborelius UP, Hökfelt T, Risling M. Sex-Specific Differences in Rodents Following a Single Primary Blast Exposure: Focus on the Monoamine and Galanin Systems. Front Neurol 2020; 11:540144. [PMID: 33178100 PMCID: PMC7593658 DOI: 10.3389/fneur.2020.540144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Most blast-induced traumatic brain injuries (bTBI) are mild in severity and culpable for the lingering and persistent neuropsychological complaints in affected individuals. There is evidence that the prevalence of symptoms post-exposure may be sex-specific. Our laboratory has focused on changes in the monoamine and the neuropeptide, galanin, systems in male rodents following primary bTBI. In this study, we aimed to replicate these findings in female rodents. Brainstem sections from the locus coeruleus (LC) and dorsal raphe nuclei (DRN) were processed for in situ hybridisation at 1 and 7 days post-bTBI. We investigated changes in the transcripts for tyrosine hydroxylase (TH), tryptophan hydroxylase two (TPH2) and galanin. Like in males, we found a transient increase in TH transcript levels bilaterally in the female LC. Changes in TPH2 mRNA were more pronounced and extensive in the DRN of females compared to males. Galanin mRNA was increased bilaterally in the LC and DRN, although this increase was not apparent until day 7 in the LC. Serum analysis revealed an increase in corticosterone, but only in exposed females. These changes occurred without any visible signs of white matter injury, cell death, or blood–brain barrier breakdown. Taken together, in the apparent absence of visible structural damage to the brain, the monoamine and galanin systems, two key players in emotional regulation, are activated deferentially in males and females following primary blast exposure. These similarities and differences should be considered when developing and evaluating diagnostic and therapeutic interventions for bTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
3
|
Li Y, Gao M, Zeng K, Xing JX, Xu FL, Xuan JF, Xia X, Liu YP, Yao J, Wang BJ. Association Between Polymorphisms in the 5' Region of the GALR1 Gene and Schizophrenia in the Northern Chinese Han Population: A Case-Control Study. Neuropsychiatr Dis Treat 2020; 16:1519-1532. [PMID: 32606704 PMCID: PMC7306470 DOI: 10.2147/ndt.s256644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/22/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Epidemiological studies have shown that genetic factors are among the causes of schizophrenia. Galanin receptor 1 is an inhibitory receptor of galanin that is widely distributed in the central nervous system. This study mainly explored the relationship between polymorphisms of the 5' region of the GALR1 gene and schizophrenia in the northern Chinese Han population. METHODS A 1545 bp fragment of the 5' regulatory region of the GALR1 gene was amplified and sequenced in 289 schizophrenia patients and 347 healthy controls. RESULTS Among the haplotypes composed of the 16 detected SNPs, the haplotype H3 was identified as conferring a risk of schizophrenia (p=0.011, OR=1.430, 95% CI=1.084-1.886). In addition, the haplotypes H4 and H7 were both protective against schizophrenia (p=0.024, OR=0.526, 95% CI=0.298-0.927; p=0.037, OR=0.197, 95% CI=0.044-0.885, respectively). In the subgroup analysis by sex, it was found that seven SNP alleles (rs72978691, rs11662010, rs11151014, rs11151015, rs13306374, rs5373, rs13306375) conferred a risk of schizophrenia in females (p<0.05), while allele G of rs7242919 (p=0.007) was protective against schizophrenia in females. Moreover, the rs72978691 AA+AC genotype (p=0.006, OR=1.874, 95% CI=1.196-2.937, power=0.780), rs7242919 CC+CG genotype (p=0.002, OR=2.027, 95% CI=1.292-3.180, power=0.861), rs11151014 GG+GT genotype (p=0.008, OR=1.834, 95% CI=1.168-2.879, power=0.735), rs11151015 GG+AG genotype (p=0.002, OR=2.013, 95% CI =1.291-3.137, power=0.843), rs13306374 CC+AC genotype (p=0.006, OR=1.881, 95% CI=1.198-2.953, power=0.788), and rs13306375 GG+AG genotype (p=0.006, OR=1.868, 95% CI=1.194-2.921, power=0.770) increased the risk of schizophrenia in females. The haplotype FH2 consisting of rs72978691, rs11662010, rs7242919, rs11151014, rs11151015, rs13306374, rs5373, and rs13306375 may also be associated with the risk of schizophrenia in females (p=0.024). CONCLUSION This study identified an association between polymorphisms in the 5' region of the GALR1 gene and schizophrenia, especially in females.
Collapse
Affiliation(s)
- Ya Li
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Meng Gao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Kuo Zeng
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
4
|
Luo H, Liu Z, Liu B, Li H, Yang Y, Xu ZQD. Virus-Mediated Overexpression of ETS-1 in the Ventral Hippocampus Counteracts Depression-Like Behaviors in Rats. Neurosci Bull 2019; 35:1035-1044. [PMID: 31327148 DOI: 10.1007/s12264-019-00412-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/27/2019] [Indexed: 12/28/2022] Open
Abstract
ETS-1 is a transcription factor that is a member of the E26 transformation-specific (ETS) family. Galanin receptor 2 (GalR2), a subtype of receptors of the neuropeptide galanin, has been shown to have an antidepressant-like effect after activation in rodents. Our previous study has shown that overexpression of ETS-1 increases the expression of GalR2 in PC12 phaeochromocytoma cells. However, whether ETS-1 has an antidepressant-like effect is still unclear. In this study, we found that chronic mild stress (CMS) decreased the expression of both ETS-1 and GalR2 in the ventral hippocampus of rats. Meanwhile, we demonstrated that overexpression of ETS-1 increased the expression of GalR2 in primary hippocampal neurons. Importantly, we showed that overexpression of ETS-1 in the ventral hippocampus counteracted the depression-like behaviors of CMS rats. Furthermore, we found that overexpression of ETS-1 increased the level of downstream phosphorylated extracellular signal-regulated protein kinases 1 and 2 (p-ERK1/2) of GalR2 in the ventral hippocampus of CMS rats. Taken together, our findings suggest that ETS-1 has an antidepressant-like effect in rats, which might be mediated by increasing the level of GalR2 and its downstream p-ERK1/2 in the ventral hippocampus.
Collapse
Affiliation(s)
- Hanjiang Luo
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Major Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zijin Liu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Major Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Bo Liu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Major Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Hui Li
- Department of Anatomy, Capital Medical University, Beijing, 100069, China
| | - Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Major Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Major Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Zahola P, Hanics J, Pintér A, Máté Z, Gáspárdy A, Hevesi Z, Echevarria D, Adori C, Barde S, Törőcsik B, Erdélyi F, Szabó G, Wagner L, Kovacs GG, Hökfelt T, Harkany T, Alpár A. Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Struct Funct 2019; 224:2061-2078. [PMID: 31144035 PMCID: PMC6591208 DOI: 10.1007/s00429-019-01886-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 12/04/2022]
Abstract
Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells. In adults, secretagogin-expressing neurons typically populate relay centres of special senses and vegetative regulatory centres of the medulla oblongata, pons and midbrain. Notably, secretagogin expression overlapped with the brainstem column of noradrenergic cell bodies, including the locus coeruleus (A6) and the A1, A5 and A7 fields. Secretagogin expression in avian, mouse, rat and human samples showed quasi-equivalent patterns, suggesting conservation throughout vertebrate phylogeny. We found reduced secretagogin expression in locus coeruleus from subjects with Alzheimer’s disease, and this reduction paralleled the loss of tyrosine hydroxylase, the enzyme rate limiting noradrenaline synthesis. Residual secretagogin immunoreactivity was confined to small submembrane domains associated with initial aberrant tau phosphorylation. In conclusion, we provide evidence that secretagogin is a useful marker to distinguish neuronal subsets in the brainstem, conserved throughout several species, and its altered expression may reflect cellular dysfunction of locus coeruleus neurons in Alzheimer’s disease.
Collapse
Affiliation(s)
- Péter Zahola
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Gáspárdy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Diego Echevarria
- Institute of Neuroscience, University of Miguel Hernandez de Elche, Alicante, Spain
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Beáta Törőcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Alán Alpár
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary. .,Department of Anatomy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Depression as a Neuroendocrine Disorder: Emerging Neuropsychopharmacological Approaches beyond Monoamines. Adv Pharmacol Sci 2019; 2019:7943481. [PMID: 30719038 PMCID: PMC6335777 DOI: 10.1155/2019/7943481] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
Depression is currently recognized as a crucial problem in everyday clinical practice, in light of ever-increasing rates of prevalence, as well as disability, morbidity, and mortality related to this disorder. Currently available antidepressant drugs are notoriously problematic, with suboptimal remission rates and troubling side-effect profiles. Their mechanisms of action focus on the monoamine hypothesis for depression, which centers on the disruption of serotonergic, noradrenergic, and dopaminergic neurotransmission in the brain. Nevertheless, views on the pathophysiology of depression have evolved notably, and the comprehension of depression as a complex neuroendocrine disorder with important systemic implications has sparked interest in a myriad of novel neuropsychopharmacological approaches. Innovative pharmacological targets beyond monoamines include glutamatergic and GABAergic neurotransmission, brain-derived neurotrophic factor, various endocrine axes, as well as several neurosteroids, neuropeptides, opioids, endocannabinoids and endovanilloids. This review summarizes current knowledge on these pharmacological targets and their potential utility in the clinical management of depression.
Collapse
|
7
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Song J, Kim OY. Galanin's implications for post-stroke improvement. Anat Cell Biol 2016; 49:223-230. [PMID: 28127496 PMCID: PMC5266107 DOI: 10.5115/acb.2016.49.4.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/16/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Stroke leads to a variety of pathophysiological conditions such as ischemic infarct, cerebral inflammation, neuronal damage, cognitive decline, and depression. Many endeavors have been tried to find the therapeutic solutions to attenuate severe neuropathogenesis after stroke. Several studies have reported that a decrease in the neuropeptide regulator ‘galanin’ is associated with neuronal loss, learning and memory dysfunctions, and depression following a stroke. The present review summarized recent evidences on the function and the therapeutic potential of galanin in post-ischemic stroke to provide a further understanding of galanin's role. Hence, we suggest that galanin needs to be considered as a therapeutic factor in the alleviation of post-stroke pathologies.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea.; Human Life Research Center, Dong-A University, Busan, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan, Korea.; Department of Food Science and Nutrition, Dong-A University, Brain Busan 21, Busan, Korea
| |
Collapse
|
9
|
Galanin contributes to monoaminergic dysfunction and to dependent neurobehavioral comorbidities of epilepsy. Exp Neurol 2016; 289:64-72. [PMID: 28013000 DOI: 10.1016/j.expneurol.2016.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
Status epilepticus (SE) in rats, along with chronic epilepsy, leads to the development of behavioral impairments resembling depressive disorder and/or attention deficit/hyperactivity disorder (ADHD), thus reflecting respective comorbidities in epilepsy patients. Suppressed neurotransmitter tone in the raphe nucleus (RN)-prefrontal cortex (PFC) serotonergic pathway and in the locus coeruleus (LC)-PFC noradrenergic pathway underlies depressive- and impulsive-like behavioral deficits respectively. We examined possible mechanisms leading to the monoamine dysfunction in brainstem efferents, namely modulatory effects of the neuropeptide galanin on serotonin (5-HT) and norepinephrine (NE) signaling. SE was induced in young adult male Wistar rats by LiCl and pilocarpine. Epileptic rats were categorized vis-à-vis behavioral deficits as not impaired, "depressed" and "impulsive". Depressive- and impulsive-like behaviors were examined in the forced swimming test (FST). The strength of serotonergic transmission in RN-PFC and of noradrenergic transmission in LC-PFC was analyzed using in vivo fast scan cyclic voltammetry. Galanin receptor type 1 (GalR1)/type 2 (GalR2) antagonist M40, and a preferential GalR2 antagonist M871 were administered over 3days locally into either RN or LC by means of ALZET osmotic minipumps connected to locally implanted infusion cannulas. Intra-RN injection of M40 improved serotonergic tone and depressive-like behavior in epileptic "depressed" rats. Intra-LC injection of M40 improved noradrenergic tone and impulsive-like behavior in epileptic "impulsive" rats. The effects of M40 were only observed in impaired subjects. The treatment did not modify neurotransmission and behavior in naïve and epileptic not impaired rats; in "depressed" rats the effects were limited to serotonergic transmission and immobility, while in "impulsive" rats - to noradrenergic transmission and struggling behavior. Intra-RN administration of M871 exacerbated depressive-like behavior, but had no effects on any other of the examined parameters in any category of animals. These findings suggest that endogenous galanin, acting through GalR1 may be involved in the pathophysiology of epilepsy-associated depression and ADHD via inhibiting RN-PFC serotonergic and LC-PFC noradrenergic transmissions respectively.
Collapse
|
10
|
Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc Natl Acad Sci U S A 2016; 113:E8472-E8481. [PMID: 27940914 DOI: 10.1073/pnas.1617824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1-3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.
Collapse
|
11
|
Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hökfelt TGM, Xu ZQD. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A 2016; 113:E4726-35. [PMID: 27457954 PMCID: PMC4987783 DOI: 10.1073/pnas.1609198113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; Division of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Jing Sun
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tong Wang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Pan Zhang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hanjiang Luo
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yongjun Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Chuanyue Wang
- Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linkoping University, SE-58183 Linkoping, Sweden
| | - Tomas G M Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
12
|
Alteration of behavioral changes and hippocampus galanin expression in chronic unpredictable mild stress-induced depression rats and effect of electroacupuncture treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:179796. [PMID: 25530777 PMCID: PMC4233667 DOI: 10.1155/2014/179796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
To explore new noninvasive treatment options for depression, this study investigated the effects of electric acupuncture (EA) for depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighteen male Sprague-Dawley rats were randomly assigned into three groups: control, model, and EA groups. Rats were treated by EA once daily for 21 days. The results showed that body weight and sucrose consumption were significantly increased in EA group than in the model group. The crossing numbers and rearing numbers in the open field test significantly decreased in the model group but not in the EA group. And EA treatments upregulated levels of hippocampus galanin (Gal) in UCMS rats back to relative normal levels. The present study suggested that EA had antidepressant effects on UCMS model rats. The potential antidepressant effect may be related to upregulating Gal expression in hippocampus.
Collapse
|
13
|
The effect of clozapine on mRNA expression for genes encoding G protein-coupled receptors and the protein components of clathrin-mediated endocytosis. Psychiatr Genet 2014; 23:153-62. [PMID: 23811784 PMCID: PMC4206381 DOI: 10.1097/ypg.0b013e32835fe51d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Clathrin-mediated endocytosis (CME) is an intracellular trafficking mechanism for packaging cargo, including G protein-coupled receptors (GPCRs), into clathrin-coated vesicles (CCVs). The antipsychotic chlorpromazine inhibits CCV assembly of adaptor protein AP2 whereas clozapine increases serotonin2A receptor internalization. We hypothesized that clozapine alters the expression of CME genes modulating vesicle turnover and GPCR internalization. MATERIALS AND METHODS SH-SY5Y human neuroblastoma cells were incubated with clozapine (1-20 µmol/l) for 24-72 h. GPCR and CME-related gene mRNA expression was measured using RT-PCR. We quantified changes in the same genes using expression data from a microarray study of mice brains after 12 weeks of treatment with 12 mg/kg/day clozapine. RESULTS The expression of genes encoding adaptor and clathrin assembly proteins, AP2A2, AP2B1, AP180, CLINT1, HIP1, ITSN2, and PICALM, increased relative to the control in SH-SY5Y cells incubated with 5-10 µmol/l clozapine for 24-72 h. The microarray study showed significantly altered expression of the above CME-related genes, with a marked 641-fold and 17-fold increase in AP180 and the serotonin1A GPCR, respectively. The expression of three serotonergic receptor and lysophosphatidic acid receptor 2 (EDG4) GPCR genes was upregulated in SH-SY5Y cells incubated with 5 µmol/l clozapine for 24 h. EDG4 expression was also increased with 10-20 µmol/l clozapine treatment at 48-72 h. Clozapine significantly decreased the expression of β-arrestin, involved in GPCR desensitization, both in vitro and vivo. CONCLUSION The changes we report in CME and GPCR mRNAs implicate CCV-mediated internalization of GPCRs and the serotonergic system in clozapine's mechanism of action, which may be useful in the design of more effective and less toxic antipsychotic therapies.
Collapse
|
14
|
Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci U S A 2014; 111:E1666-73. [PMID: 24706871 DOI: 10.1073/pnas.1403649111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression.
Collapse
|
15
|
Association of galanin and major depressive disorder in the Chinese Han population. PLoS One 2013; 8:e64617. [PMID: 23741354 PMCID: PMC3669409 DOI: 10.1371/journal.pone.0064617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to investigate the association of galanin (GAL) gene and the development of depression in the Chinese Han population. Methods A total of 700 patients with depression who met the diagnostic criteria of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 673 healthy controls were used in this study. Ligase detection reactions were performed on 10 selected single nucleotide polymorphism (SNP) sites in the GAL gene. A series of statistical methods were carried out to investigate the correlation between the GAL gene SNP and the patient susceptibility to depression. Results The SNPs of rs694066 in the GAL gene showed a positive correlation with MDD. Compared with the healthy controls, lower frequency of G/G genotype and higher frequency of A/G genotype were observed in rs694066 in MDD patients, a lower frequency of G-allele and higher frequency of A-allele were observed in rs694066. These correlations were more pronounced in the 376 female patients and 360 female control subjects than in the 324 male patients and 313 healthy male subjects. Conclusions This study investigated the relationship between the GAL gene SNP and the susceptibility to depression in the Chinese Han population. The findings clearly indicate that the GAL gene polymorphism is closely correlated to the incidence of depression in the Chinese Han female patients.
Collapse
|
16
|
Distinct features of neurotransmitter systems in the human brain with focus on the galanin system in locus coeruleus and dorsal raphe. Proc Natl Acad Sci U S A 2013; 110:E536-45. [PMID: 23341594 DOI: 10.1073/pnas.1221378110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using riboprobe in situ hybridization, we studied the localization of the transcripts for the neuropeptide galanin and its receptors (GalR1-R3), tryptophan hydroxylase 2, tyrosine hydroxylase, and nitric oxide synthase as well as the three vesicular glutamate transporters (VGLUT 1-3) in the locus coeruleus (LC) and the dorsal raphe nucleus (DRN) regions of postmortem human brains. Quantitative real-time PCR (qPCR) was used also. Galanin and GalR3 mRNA were found in many noradrenergic LC neurons, and GalR3 overlapped with serotonin neurons in the DRN. The qPCR analysis at the LC level ranked the transcripts in the following order in the LC: galanin >> GalR3 >> GalR1 > GalR2; in the DRN the ranking was galanin >> GalR3 >> GalR1 = GalR2. In forebrain regions the ranking was GalR1 > galanin > GalR2. VGLUT1 and -2 were strongly expressed in the pontine nuclei but could not be detected in LC or serotonin neurons. VGLUT2 transcripts were found in very small, nonpigmented cells in the LC and in the lateral and dorsal aspects of the periaqueductal central gray. Nitric oxide synthase was not detected in serotonin neurons. These findings show distinct differences between the human brain and rodents, especially rat, in the distribution of the galanin system and some other transmitter systems. For example, GalR3 seems to be the important galanin receptor in both the human LC and DRN versus GalR1 and -2 in the rodent brain. Such knowledge may be important when considering therapeutic principles and drug development.
Collapse
|