1
|
Mitrić A, Castellano I. Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radic Biol Med 2023; 208:672-683. [PMID: 37739139 DOI: 10.1016/j.freeradbiomed.2023.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Gamma-glutamyl transpeptidase (GGT) is an enzyme located on the outer membrane of the cells where it regulates the metabolism of glutathione (GSH), the most abundant intracellular antioxidant thiol. GGT plays a key role in the control of redox homeostasis, by hydrolyzing extracellular GSH and providing the cell with the recovery of cysteine, which is necessary for de novo intracellular GSH and protein biosynthesis. Therefore, the upregulation of GGT confers to the cell greater resistance to oxidative stress and the advantage of growing fast. Indeed, GGT is upregulated in inflammatory conditions and in the progression of various human tumors and it is involved in many physiological disorders related to oxidative stress, such as cardiovascular disease and diabetes. Currently, increased GGT expression is considered a marker of liver damage, cancer, and low-grade chronic inflammation. This review addresses the current knowledge on the structure-function relationship of GGT, focusing on human GGT, and provides information on the pleiotropic biological role and relevance of the enzyme as a target of drugs aimed at alleviating oxidative stress-related diseases. The development of new GGT inhibitors is critically discussed, as are the advantages and disadvantages of their potential use in clinics. Considering its pleiotropic activities and evolved functions, GGT is a potential "moonlighting protein".
Collapse
Affiliation(s)
- Aleksandra Mitrić
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
2
|
Milito A, Brancaccio M, Lisurek M, Masullo M, Palumbo A, Castellano I. Probing the Interactions of Sulfur-Containing Histidine Compounds with Human Gamma-Glutamyl Transpeptidase. Mar Drugs 2019; 17:md17120650. [PMID: 31757046 PMCID: PMC6949936 DOI: 10.3390/md17120650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) is a cell surface enzyme involved in glutathione metabolism and maintenance of redox homeostasis. High expression of GGT on tumor cells is associated with an increase of cell proliferation and resistance against chemotherapy. GGT inhibitors that have been evaluated in clinical trials are too toxic for human use. We have previously identified ovothiols, 5(Nπ)-methyl-thiohistidines of marine origin, as non-competitive-like inhibitors of GGT that are more potent than the known GGT inhibitor, 6-diazo-5-oxo-l-norleucine (DON), and are not toxic for human embryonic cells. We extended these studies to the desmethylated form of ovothiol, 5-thiohistidine, and confirmed that this ovothiol derivative also acts as a non-competitive-like GGT inhibitor, with a potency comparable to ovothiol. We also found that both 5-thiohistidine derivatives act as reversible GGT inhibitors compared to the irreversible DON. Finally, we probed the interactions of 5-thiohistidines with GGT by docking analysis and compared them with the 2-thiohistidine ergothioneine, the physiological substrate glutathione, and the DON inhibitor. Overall, our results provide new insight for further development of 5-thiohistidine derivatives as therapeutics for GGT-positive tumors.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Michael Lisurek
- Department of Computational Chemistry and Drug Design, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
| | - Mariorosario Masullo
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
- Correspondence: ; Tel.: +39-081-5833206
| |
Collapse
|
3
|
Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis. Cells 2019; 8:cells8111356. [PMID: 31671675 PMCID: PMC6929087 DOI: 10.3390/cells8111356] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-β1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed.
Collapse
|
4
|
Mutational Analysis of a Highly Conserved PLSSMXP Sequence in the Small Subunit of Bacillus licheniformis γ-Glutamyltranspeptidase. Biomolecules 2019; 9:biom9090508. [PMID: 31546955 PMCID: PMC6769717 DOI: 10.3390/biom9090508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
A highly conserved 458PLSSMXP464 sequence in the small subunit (S-subunit) of an industrially important Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT) was identified by sequence alignment. Molecular structures of the precursor mimic and the mature form of BlGGT clearly reveal that this peptide sequence is in close spatial proximity to the self-processing and catalytic sites of the enzyme. To probe the role of this conserved sequence, ten mutant enzymes of BlGGT were created through a series of deletion and alanine-scanning mutagenesis. SDS-PAGE and densitometric analyses showed that the intrinsic ability of BlGGT to undergo autocatalytic processing was detrimentally affected by the deletion-associated mutations. However, loss of self-activating capacity was not obviously observed in most of the Ala-replacement mutants. The Ala-replacement mutants had a specific activity comparable to or greater than that of the wild-type enzyme; conversely, all deletion mutants completely lost their enzymatic activity. As compared with BlGGT, S460A and S461S showed greatly enhanced kcat/Km values by 2.73- and 2.67-fold, respectively. The intrinsic tryptophan fluorescence and circular dichroism spectral profiles of Ala-replacement and deletion mutants were typically similar to those of BlGGT. However, heat and guanidine hydrochloride-induced unfolding transitions of the deletion-associated mutant proteins were severely reduced as compared with the wild-type enzyme. The predictive mutant models suggest that the microenvironments required for both self-activation and catalytic reaction of BlGGT can be altered upon mutations.
Collapse
|
5
|
Saoi M, Li A, McGlory C, Stokes T, von Allmen MT, Phillips SM, Britz-McKibbin P. Metabolic Perturbations from Step Reduction in Older Persons at Risk for Sarcopenia: Plasma Biomarkers of Abrupt Changes in Physical Activity. Metabolites 2019; 9:metabo9070134. [PMID: 31288431 PMCID: PMC6680920 DOI: 10.3390/metabo9070134] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass, strength and function, which may be accelerated during periods of physical inactivity. Declines in skeletal muscle and functionality not only impacts mobility but also increases chronic disease risk, such as type 2 diabetes. The aim of this study was to measure adaptive metabolic responses to acute changes in habitual activity in a cohort of overweight, pre-diabetic older adults (age = 69 ± 4 years; BMI = 27 ± 4 kg/m2, n = 17) when using non-targeted metabolite profiling by multisegment injection-capillary electrophoresis-mass spectrometry. Participants completed two weeks of step reduction (<1000 steps/day) followed by a two week recovery period, where fasting plasma samples were collected at three time intervals at baseline, after step reduction and following recovery. Two weeks of step reduction elicited increases in circulatory metabolites associated with a decline in muscle energy metabolism and protein degradation, including glutamine, carnitine and creatine (q < 0.05; effect size > 0.30), as well as methionine and deoxycarnitine (p < 0.05; effect size ≈ 0.20) as compared to baseline. Similarly, decreases in uremic toxins in plasma that promote muscle inflammation, indoxyl sulfate and hippuric acid, as well as oxoproline, a precursor used for intramuscular glutathione recycling, were also associated with physical inactivity (p < 0.05; effect size > 0.20). Our results indicate that older persons are susceptible to metabolic perturbations due to short-term step reduction that were not fully reversible with resumption of normal ambulatory activity over the same time period. These plasma biomarkers may enable early detection of inactivity-induced metabolic dysregulation in older persons at risk for sarcopenia not readily measured by current imaging techniques or muscle function tests, which is required for the design of therapeutic interventions to counter these deleterious changes in support of healthy ageing.
Collapse
Affiliation(s)
- Michelle Saoi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Alice Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mark T von Allmen
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
6
|
Antifibrotic Effect of Marine Ovothiol in an In Vivo Model of Liver Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5045734. [PMID: 30647809 PMCID: PMC6311726 DOI: 10.1155/2018/5045734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a complex process caused by chronic hepatic injury, which leads to an excessive increase in extracellular matrix protein accumulation and fibrogenesis. Several natural products, including sulfur-containing compounds, have been investigated for their antifibrotic effects; however, the molecular mechanisms underpinning their action are partially still obscure. In this study, we have investigated for the first time the effect of ovothiol A, π-methyl-5-thiohistidine, isolated from sea urchin eggs on an in vivo murine model of liver fibrosis. Mice were intraperitoneally injected with carbon tetrachloride (CCl4) to induce liver fibrosis and treated with ovothiol A at the dose of 50 mg/kg 3 times a week for 2 months. Treatment with ovothiol A caused a significant reduction of collagen fibers as observed by histopathological changes and serum parameters compared to mice treated with control solution. This antifibrotic effect was associated to the decrease of fibrogenic markers involved in liver fibrosis progression, such as the transforming growth factor (TGF-β), the α-smooth muscle actin (α-SMA), and the tissue metalloproteinases inhibitor (TIMP-1). Finally, we provided evidence that the attenuation of liver fibrosis by ovothiol A treatment can be regulated by the expression and activity of the membrane-bound γ-glutamyl-transpeptidase (GGT), which is a key player in maintaining intracellular redox homoeostasis. Overall, these findings indicate that ovothiol A has significant antifibrotic properties and can be considered as a new marine drug or dietary supplement in potential therapeutic strategies for the treatment of liver fibrosis.
Collapse
|
7
|
Pica A, Chi MC, Chen YY, d'Ischia M, Lin LL, Merlino A. The maturation mechanism of γ-glutamyl transpeptidases: Insights from the crystal structure of a precursor mimic of the enzyme from Bacillus licheniformis and from site-directed mutagenesis studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:195-203. [PMID: 26536828 DOI: 10.1016/j.bbapap.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
γ-Glutamyl transpeptidases (γ-GTs) are members of N-terminal nucleophile hydrolase superfamily. They are synthetized as single-chain precursors, which are then cleaved to form mature enzymes. Basic aspects of autocatalytic processing of these pro-enzymes are still unknown. Here we describe the X-ray structure of the precursor mimic of Bacillus licheniformis γ-GT (BlGT), obtained by mutating catalytically important threonine to alanine (T399A-BlGT), and report results of autoprocessing of mutants of His401, Thr415, Thr417, Glu419 and Arg571. Data suggest that Thr417 is in a competent position to activate the catalytic threonine (Thr399) for nucleophilic attack of the scissile peptide bond and that Thr415 plays a major role in assisting the process. On the basis of these new structural results, a possible mechanism of autoprocessing is proposed. This mechanism, which guesses the existence of a six-membered transition state involving one carbonyl and two hydroxyl groups, is in agreement with all the available experimental data collected on γ-GTs from different species and with our new Ala-scanning mutagenesis data.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80133, Italy
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80133, Italy.
| |
Collapse
|
8
|
Ahmed HH, Shousha WG, Shalby AB, El-Mezayen HA, Ismaiel NN, Mahmoud NS. Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol 2015; 36:1667-1678. [PMID: 25371072 DOI: 10.1007/s13277-014-2767-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/14/2022] Open
Abstract
This study was designed to investigate the role of curcumin against hepatocellular carcinoma (HCC) induced in rats. Forty rats were divided into five groups. Group (1) was negative control. Groups (2), (4), and (5) were orally administrated N-nitrosodiethylamine for HCC induction, then group (2) was left untreated, and group (4) was treated orally with curcumin, while group (5) was intraperitoneally injected with doxorubicin. Group (3) was served as curcumin control group. Serum alpha-fetoprotein, alpha L-fucosidase and vascular endothelial growth factor levels were analyzed. Gamma glutamyl transferase (GGT) and heat shock protein gp96 (HSPgp96) gene expressions were detected by RT-PCR. The immunohistochemical analysis of proliferating cell nuclear antigen (PCNA) and Ki-67 expressions was performed. Apoptosis was detected using DNA fragmentation assay. Also, histological investigation of liver tissue was achieved. Untreated HCC group showed significant elevation in the studied biochemical markers and significant upregulation in GGT and HSPgp96 gene expression as well as marked increase in PCNA and Ki-67 expression. Furthermore, this group revealed no DNA fragmentation. Histological investigation of liver tissue sections in HCC group revealed a typical anaplasia. On the other hand, the curcumin-treated group showed a significant depletion in the studied tumor markers and a significant downregulation in GGT and HSPgp96 gene expression. Also, this group displayed remarkable decrease in PCNA and Ki-67 expression. Moreover, this group revealed an obvious DNA fragmentation. Interestingly, treatment with curcumin showed remarkable improvement in the histological features of liver tissue. This study revealed the promising therapeutic role of curcumin against hepatocellular carcinoma owing to its antiangiogenic, antiproliferative, and apoptotic effects.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, 12411, Dokki, Giza, Egypt,
| | | | | | | | | | | |
Collapse
|
9
|
Lin LL, Chen YY, Chi MC, Merlino A. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1523-9. [DOI: 10.1016/j.bbapap.2014.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 12/21/2022]
|