1
|
Characterization of Acidic Mammalian Chitinase as a Novel Biomarker for Severe Periodontitis (Stage III/IV): A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074113. [PMID: 35409795 PMCID: PMC8998681 DOI: 10.3390/ijerph19074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Periodontitis is a chronic inflammatory condition characterized by gingival infection, periodontal pocket formation, and alveolar bone loss. Acidic mammalian chitinase (AMCase), an active chitinase enzyme, increased its expression under severe inflammation and related systemic disorders. However, AMCase expression and molecular mechanism in periodontal inflammation, have not been elucidated yet. This study was aimed to characterize AMCase in severe periodontitis patients compare to those in periodontally healthy subjects. In total, 15 periodontally healthy subjects and 15 severe (stage III/IV) periodontitis patients were enrolled with their informed consent. Tissue samples were collected and analyzed using Western blot and enzyme-linked immunosorbent assay (ELISA). AMCase protein expressions in periodontal patients were significantly more increased than those of periodontally healthy individuals. ELISA resulted in median values (first quartile to third quartile) of the periodontally healthy group 0.654 ng/mL (range, 0.644−0.827 ng/mL) and the periodontitis group 0.965 ng/mL (range, 0.886−1.165 ng/mL). AMCase was expressed significantly higher levels in periodontitis patients than in periodontally healthy individuals (p < 0.05). This suggests that AMCase may play a potential role as a biomarker for the screening and early diagnosis of severe periodontitis.
Collapse
|
2
|
Evolutionary insights into the microneme-secreted, chitinase-containing high molecular weight protein complexes involved in Plasmodium invasion of the mosquito midgut. Infect Immun 2021; 90:e0031421. [PMID: 34606368 DOI: 10.1128/iai.00314-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While general mechanisms by which Plasmodium ookinetes invade the mosquito midgut have been studied, details remain to be understood regarding the interface of the ookinete, specifically its barriers to invasion, such as the proteolytic milieu, the chitin-containing, protein cross-linked peritrophic matrix, and the midgut epithelium. Here we review knowledge of Plasmodium chitinases and the mechanisms by which they mediate the ookinete crossing the peritrophic matrix. The integration of new genomic insights into previous findings advances our understanding of Plasmodium evolution. Recently obtained Plasmodium spp. genomic data enable identification of the conserved residues in the experimentally demonstrated hetero-multimeric, high molecular weight complex comprised of a short chitinase covalently linked to binding partners, von Willebrand factor A domain-related protein (WARP) and secreted ookinete adhesive protein (SOAP). Artificial intelligence-based high-resolution structural modeling using the DeepMind AlphaFold algorithm yielded highly informative 3D structures and insights into how short chitinases, WARP, and SOAP may interact at the atomic level to form the ookinete-secreted peritrophic matrix invasion complex. Elucidating the significance of the divergence of ookinete-secreted micronemal proteins among Plasmodium species could lead to a better understanding of ookinete invasion machinery and the co-evolution of Plasmodium-mosquito interactions.
Collapse
|
3
|
Patra KP, Kaur H, Kolli SK, Wozniak JM, Prieto JH, Yates JR, Gonzalez DJ, Janse CJ, Vinetz JM. A Hetero-Multimeric Chitinase-Containing Plasmodium falciparum and Plasmodium gallinaceum Ookinete-Secreted Protein Complex Involved in Mosquito Midgut Invasion. Front Cell Infect Microbiol 2021; 10:615343. [PMID: 33489941 PMCID: PMC7821095 DOI: 10.3389/fcimb.2020.615343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria parasites are transmitted by Anopheles mosquitoes. During its life cycle in the mosquito vector the Plasmodium ookinete escapes the proteolytic milieu of the post-blood meal midgut by traversing the midgut wall. This process requires penetration of the chitin-containing peritrophic matrix lining the midgut epithelium, which depends in part on ookinete-secreted chitinases. Plasmodium falciparum ookinetes have one chitinase (PfCHT1), whereas ookinetes of the avian-infecting parasite, P. gallinaceum, have two, a long and a short form, PgCHT1 and PgCHT2, respectively. Published data indicates that PgCHT2 forms a high molecular weight (HMW) reduction-sensitive complex; and one binding partner is the ookinete-produced von Willebrand A-domain-containing protein, WARP. Size exclusion chromatography data reported here show that P. gallinaceum PgCHT2 and its ortholog, P. falciparum PfCHT1 are covalently-linked components of a HMW chitinase-containing complex (> 1,300 kDa). Mass spectrometry of ookinete-secreted proteins isolated using a new chitin bead pull-down method identified chitinase-associated proteins in P. falciparum and P. gallinaceum ookinete-conditioned culture media. Mass spectrometry of this complex showed the presence of several micronemal proteins including von Willebrand factor A domain-related protein (WARP), ookinete surface enolase, and secreted ookinete adhesive protein (SOAP). To test the hypothesis that ookinete-produced PfCHT1 can form a high molecular homo-multimer or, alternatively, interacts with P. berghei ookinete-produced proteins to produce an HMW hetero-multimer, we created chimeric P. berghei parasites expressing PfCHT1 to replace PbCHT1, enabling the production of large numbers of PfCHT1-expressing ookinetes. We show that chimeric P. berghei ookinetes express monomeric PfCHT1, but a HMW complex containing PfCHT1 is not present. A better understanding of the chitinase-containing HMW complex may enhance development of next-generation vaccines or drugs that target malaria transmission stages.
Collapse
Affiliation(s)
- Kailash P Patra
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Hargobinder Kaur
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob M Wozniak
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Judith Helena Prieto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Department of Chemistry, Western Connecticut State University, Danbury, CT, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Almeida F, Sardinha-Silva A, da Silva TA, Pessoni AM, Pinzan CF, Alegre-Maller ACP, Cecílio NT, Moretti NS, Damásio ARL, Pedersoli WR, Mineo JR, Silva RN, Roque-Barreira MC. Toxoplasma gondii Chitinase Induces Macrophage Activation. PLoS One 2015; 10:e0144507. [PMID: 26659253 PMCID: PMC4684212 DOI: 10.1371/journal.pone.0144507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50 °C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.
Collapse
Affiliation(s)
- Fausto Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - Aline Sardinha-Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - Thiago Aparecido da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - André Moreira Pessoni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - Camila Figueiredo Pinzan
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - Ana Claudia Paiva Alegre-Maller
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - Nerry Tatiana Cecílio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| | - Nilmar Silvio Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, São Paulo, SP, Brasil
| | - André Ricardo Lima Damásio
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade de Campinas, Campinas, SP, Brasil
| | - Wellington Ramos Pedersoli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-900, Brasil
| | - José Roberto Mineo
- Laboratorio de Imunoparasitologia, Departamento de Imunologia, Microbiologia e Parasitologia, Universidade Federal de Uberlândia, Av. Pará, 1720, Uberlândia, MG, 38400 902, Brasil
| | - Roberto Nascimento Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-900, Brasil
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brasil
| |
Collapse
|
5
|
Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res 2014; 57:99-105. [PMID: 24222276 DOI: 10.1007/s12026-013-8459-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated serum levels of a glycoprotein known as chitinase-3-like protein 1 (CHI3L1) have been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in cancer have not yet been completely elucidated. In this review, we describe the role of CHI3L1 in inducing pro-inflammatory/pro-tumorigenic and angiogenic factors that could promote tumor growth and metastasis.
Collapse
Affiliation(s)
- Stephania Libreros
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | | | | |
Collapse
|
6
|
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73:479-501. [PMID: 21054166 DOI: 10.1146/annurev-physiol-012110-142250] [Citation(s) in RCA: 650] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu AC, Lasky-Su J, Rogers CA, Klanderman BJ, Litonjua AA. Fungal exposure modulates the effect of polymorphisms of chitinases on emergency department visits and hospitalizations. Am J Respir Crit Care Med 2010; 182:884-9. [PMID: 20538957 DOI: 10.1164/rccm.201003-0322oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chitinases are enzymes that cleave chitin, which is present in fungal cells. Two types of human chitinases, chitotriosidase and acidic mammalian chitinase, and the chitinase-like protein, YKL-40, seem to play an important role in asthma. We hypothesized that exposure to environmental fungi may modulate the effect of chitinases in individuals with asthma. OBJECTIVES To explore whether interactions between high fungal exposure and common genetic variants in the two chitinases in humans, CHIT1 and CHIA, and the chitinase 3-like 1 gene, CHI3L1, are associated with severe asthma exacerbations and other asthma-related outcomes. METHODS Forty-eight single nucleotide polymorphisms (SNPs) in CHIT1, CHIA, and CHI3L1 and one CHIT1 duplication were genotyped in 395 subjects and their parents as part of the Childhood Asthma Management Program. Household levels of mold (an index of fungal exposure) were determined on house dust samples. We conducted family-based association tests with gene-environment interactions. Our outcome was severe exacerbation, defined as emergency department visits and hospitalizations from asthma over a 4-year period, and our secondary outcomes included indices of lung function and allergy-related phenotypes. MEASUREMENTS AND MAIN RESULTS Of the 395 subjects who had mold levels at randomization, 24% (95 subjects) had levels that were greater than 25,000 units per gram of house dust (high mold exposure). High mold exposure significantly modified the relation between three SNPs in CHIT1 (rs2486953, rs4950936, and rs1417149) and severe exacerbations (P for interaction 0.0010 for rs2486953, 0.0008 for rs4950936, and 0.0005 for rs1417149). High mold exposure did not significantly modify the relationship between any of the other variants and outcomes. CONCLUSIONS Environmental exposure to fungi, modifies the effect of CHIT1 SNPs on severe asthma exacerbations.
Collapse
Affiliation(s)
- Ann Chen Wu
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
8
|
Lee CG, Elias JA. Role of breast regression protein-39/YKL-40 in asthma and allergic responses. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2009; 2:20-7. [PMID: 20224674 PMCID: PMC2831605 DOI: 10.4168/aair.2010.2.1.20] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/10/2009] [Indexed: 01/15/2023]
Abstract
BRP-39 and its human homolog YKL-40 have been regarded as a prototype of chitinase-like proteins (CLP) in mammals. Exaggerated levels of YKL-40 protein and/or mRNA have been noted in a number of diseases characterized by inflammation, tissue remodeling, and aberrant cell growth. Asthma is an inflammatory disease characterized by airway hyperresponsiveness and airway remodeling. Recently, the novel regulatory role of BRP-39/YKL-40 in the pathogenesis of asthma has been demonstrated both in human studies and allergic animal models. The levels of YKL-40 are increased in the circulation and lungs from asthmatics where they correlate with disease severity, and CHI3L1 polymorphisms correlate with serum YKL-40 levels, asthma and abnormal lung function. Animal studies using BRP-39 null mutant mice demonstrated that BRP-39 was required for optimal allergen sensitization and Th2 inflammation. These studies suggest the potential use of BRP-39 as a biomarker as well as a therapeutic target for asthma and other allergic diseases. Here, we present an overview of chitin/chitinase biology and summarize recent findings on the role of BRP-39 in the pathogenesis of asthma and allergic responses.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
9
|
Contributions of Francisella tularensis subsp. novicida chitinases and Sec secretion system to biofilm formation on chitin. Appl Environ Microbiol 2009; 76:596-608. [PMID: 19948864 DOI: 10.1128/aem.02037-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Francisella tularensis, the zoonotic cause of tularemia, can infect numerous mammals and other eukaryotes. Although studying F. tularensis pathogenesis is essential to comprehending disease, mammalian infection is just one step in the ecology of Francisella species. F. tularensis has been isolated from aquatic environments and arthropod vectors, environments in which chitin could serve as a potential carbon source and as a surface for attachment and growth. We show that F. tularensis subsp. novicida forms biofilms during the colonization of chitin surfaces. The ability of F. tularensis to persist using chitin as a sole carbon source is dependent on chitinases, since mutants lacking chiA or chiB are attenuated for chitin colonization and biofilm formation in the absence of exogenous sugar. A genetic screen for biofilm mutants identified the Sec translocon export pathway and 14 secreted proteins. We show that these genes are important for initial attachment during biofilm formation. We generated defined deletion mutants by targeting two chaperone genes (secB1 and secB2) involved in Sec-dependent secretion and four genes that encode putative secreted proteins. All of the mutants were deficient in attachment to polystyrene and chitin surfaces and for biofilm formation compared to wild-type F. novicida. In contrast, mutations in the Sec translocon and secreted factors did not affect virulence. Our data suggest that biofilm formation by F. tularensis promotes persistence on chitin surfaces. Further study of the interaction of F. tularensis with the chitin microenvironment may provide insight into the environmental survival and transmission mechanisms of this pathogen.
Collapse
|
10
|
Homer RJ, Zhu Z, Cohn L, Lee CG, White WI, Chen S, Elias JA. Differential expression of chitinases identify subsets of murine airway epithelial cells in allergic inflammation. Am J Physiol Lung Cell Mol Physiol 2006; 291:L502-11. [PMID: 16556727 DOI: 10.1152/ajplung.00364.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian chitinase family includes members both with and without enzymatic activity against chitin, a product of fungal cell walls, exoskeletons of crustaceans and insects, and the microfilarial sheaths of parasitic nematodes. Two members of that family, Ym1 and acidic mammalian chitinase (AMCase), are strongly upregulated in pulmonary T helper (Th) 2 inflammation but not in Th1 inflammation. The sites of expression of these products are incompletely known. We show here that, in two different models of Th2 inflammation, Ym1 and AMCase are mutually exclusively expressed in proximal vs. distal airway epithelium, respectively, whereas both are expressed in alveolar macrophages. This regional difference along the airway corresponds to the previously noted distinction between mucus positive proximal cells and mucus negative distal cells under the same conditions. Among distal cells, AMCase colocalizes with epithelial cells expressing the Clara cell marker Clara cell secretory protein. These AMCase-expressing cells retain expression of FOXA2, a transcription factor whose downregulation in association with IL-13 signaling has previously been associated with production of mucus in proximal airway epithelial cells. These results provide evidence that secretory cells of proximal and distal airways undergo fundamentally different gene expression programs in response to allergic inflammation. Furthermore, AMCase provides the first positive molecular marker of distal Clara cell secretory protein-expressing cells under these conditions.
Collapse
Affiliation(s)
- Robert J Homer
- Department of Pathology, Yale University School of Medicine and Pathology and Laboratory Medicine Service, Veterans Affairs Connecticut HealthCare System, West Haven, 06520-8023, USA.
| | | | | | | | | | | | | |
Collapse
|