1
|
Navarro G, Franco N, Martínez-Pinilla E, Franco R. The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective. Front Genet 2017; 8:179. [PMID: 29230234 PMCID: PMC5711780 DOI: 10.3389/fgene.2017.00179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
A single word, Epigenetics, underlies one exciting subject in today's Science, with different sides and with interactions with philosophy. The apparent trivial description includes everything in between genotype and phenotype that occurs for a given unique DNA sequence/genome. This Perspective article first presents an historical overview and the reasons for the lack of consensus in the field, which derives from different interpretations of the diverse operative definitions of Epigenetics. In an attempt to reconcile the different views, we propose a novel concept, the “cytocrin system.” Secondly, the article questions the inheritability requirement and makes emphasis in the epigenetic mechanisms, known or to be discovered, that provide hope for combating human diseases. Hopes in cancer are at present in deep need of deciphering mechanisms to support ad hoc therapeutic approaches. Better perspectives are for diseases of the central nervous system, in particular to combat neurodegeneration and/or cognitive deficits in Alzheimer's disease. Neurons are post-mitotic cells and, therefore, epigenetic targets to prevent neurodegeneration should operate in non-dividing diseased cells. Accordingly, epigenetic-based human therapy may not need to count much on transmissible potential.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Pharmacy School, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
3
|
King GJ. Morphological development inBrassica oleraceais modulated byin vivotreatment with 5-azacytidine. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/14620316.1995.11515304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Hariri M, Salehi R, Feizi A, Mirlohi M, Ghiasvand R, Habibi N. A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: effects on epigenetics and oxidative stress in patients with type II diabetes. GENES AND NUTRITION 2015; 10:52. [PMID: 26577825 DOI: 10.1007/s12263-015-0503-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023]
Abstract
This clinical trial aimed to discover the effects of probiotic soy milk and soy milk on MLH1 and MSH2 promoter methylation, and oxidative stress among type II diabetic patients. Forty patients with type II diabetes mellitus aged 35-68 years were assigned to two groups in this randomized, double-blind, controlled clinical trial. Patients in the intervention group consumed 200 ml/day of probiotic soy milk containing Lactobacillus plantarum A7, while those in the control group consumed 200 ml/d of conventional soy milk for 8 weeks. Fasting blood samples, anthropometric measurements, and 24-h dietary recalls were collected at the baseline and at the end of the study, respectively. Probiotic soy milk significantly decreased promoter methylation in proximal and distal MLH1 promoter region (P < 0.01 and P < 0.0001, respectively) compared with the baseline values, while plasma concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) decreased significantly compared with soy milk (P < 0.05). In addition, a significant increase in superoxide dismutase (SOD) activity was observed in probiotic soy milk group compared with baseline value (P < 0.01). There were no significant changes from baseline in the promoter methylation of MSH2 within either group (P > 0.05). The consumption of probiotic soy milk improved antioxidant status in type II diabetic patients and may decrease promoter methylation among these patients, indicating that probiotic soy milk is a promising agent for diabetes management.
Collapse
Affiliation(s)
- Mitra Hariri
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rasoul Salehi
- Pediatrics Inherited Diseases Research Center, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirlohi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nahal Habibi
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
|
6
|
Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010; 13:1338-44. [PMID: 20975758 DOI: 10.1038/nn.2672] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders.
Collapse
Affiliation(s)
- Dengke K Ma
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
7
|
Yang Q, Kiernan CM, Tian Y, Salwen HR, Chlenski A, Brumback BA, London WB, Cohn SL. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res 2007; 13:3191-7. [PMID: 17545522 DOI: 10.1158/1078-0432.ccr-06-2846] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic aberrations have been shown to play an important role in the pathogenesis of most cancers. To investigate the clinical significance of epigenetic changes in neuroblastoma, we evaluated the relationship between clinicopathologic variables and the pattern of gene methylation in neuroblastoma cell lines and tumors. EXPERIMENTAL DESIGN Methylation-specific PCR was used to evaluate the gene methylation status of 19 genes in 14 neuroblastoma cell lines and 8 genes in 70 primary neuroblastoma tumors. Associations between gene methylation, established prognostic factors, and outcome were evaluated. Log-rank tests were used to identify the number of methylated genes that was most predictive of overall survival. RESULTS Epigenetic changes were detected in the neuroblastoma cell lines and primary tumors, although the pattern of methylation varied. Eight of the 19 genes analyzed were methylated in >70% of the cell lines. Epigenetic changes of four genes were detected in only small numbers of cell lines. None of the cell lines had methylation of the other seven genes analyzed. In primary neuroblastoma tumors, high-risk disease and poor outcome were associated with methylation of DCR2, CASP8, and HIN-1 individually. Although methylation of the other five individual genes was not predictive of poor outcome, a trend toward decreased survival was seen in patients with a methylation phenotype, defined as > or =4 methylated genes (P = 0.055). CONCLUSION Our study indicates that clinically aggressive neuroblastoma tumors have aberrant methylation of multiple genes and provides a rationale for exploring treatment strategies that include demethylating agents.
Collapse
Affiliation(s)
- Qiwei Yang
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H. Epigenetic inheritance in rice plants. ANNALS OF BOTANY 2007; 100:205-17. [PMID: 17576658 PMCID: PMC2735323 DOI: 10.1093/aob/mcm110] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Epigenetics is defined as mechanisms that regulate gene expression without base sequence alteration. One molecular basis is considered to be DNA cytosine methylation, which reversibly modifies DNA or chromatin structures. Although its correlation with epigenetic inheritance over generations has been circumstantially shown, evidence at the gene level has been limited. The present study aims to find genes whose methylation status directly correlates with inheritance of phenotypic changes. METHODS DNA methylation in vivo was artificially reduced by treating rice (Oryza sativa ssp. japonica) seeds with 5-azadeoxycytidine, and the progeny were cultivated in the field for > 10 years. Genomic regions with changed methylation status were screened by the methylation-sensitive amplified polymorphysm (MSAP) method, and cytosine methylation was directly scanned by the bisulfite mapping method. Pathogen infection with Xanthomonas oryzae pv. oryzae, race PR2 was performed by the scissors-dip method on mature leaf blades. KEY RESULTS The majority of seedlings were lethal, but some survived to maturity. One line designated as Line-2 showed a clear marker phenotype of dwarfism, which was stably inherited by the progeny over nine generations. MSAP screening identified six fragments, among which two were further characterized by DNA blot hybridization and direct methylation mapping. One clone encoding a retrotransposon gag-pol polyprotein showed a complete erasure of 5-methylcytosines in Line-2, but neither translocation nor expression of this region was detectable. The other clone encoded an Xa21-like protein, Xa21G. In wild-type plants, all cytosines were methylated within the promoter region, whereas in Line-2, corresponding methylation was completely erased throughout generations. Expression of Xa21G was not detectable in wild type but was constitutive in Line-2. When infected with X. oryzae pv. oryzae, against which Xa21 confers resistance in a gene-for-gene manner, the progeny of Line-2 were apparently resistant while the wild type was highly susceptible without Xa21G expression. CONCLUSIONS These results indicated that demethylation was selective in Line-2, and that promoter demethylation abolished the constitutive silencing of Xa21G due to hypermethylation, resulting in acquisition of disease resistance. Both hypomethylation and resistant trait were stably inherited. This is a clear example of epigenetic inheritance, and supports the idea of Lamarckian inheritance which suggested acquired traits to be heritable.
Collapse
Affiliation(s)
- Keiko Akimoto
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hatsue Katakami
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hyun-Jung Kim
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Emiko Ogawa
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Cecile M. Sano
- Department of Plant Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Yuko Wada
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hiroshi Sano
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
- For correspondence, E-mail
| |
Collapse
|
9
|
Paulin RP, Ho T, Balzer HJ, Holliday R. Gene silencing by DNA methylation and dual inheritance in Chinese hamster ovary cells. Genetics 1998; 149:1081-8. [PMID: 9611215 PMCID: PMC1460210 DOI: 10.1093/genetics/149.2.1081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chinese hamster ovary (CHO) cells strain D422, which has one copy of the adenine phosphoribosyl transferase (APRT) gene, were permeabilized by electroporation and treated with 5-methyl deoxycytidine triphosphate. Cells with a silenced APRT gene were selected on 2, 6-diaminopurine. Colonies were isolated and shown to be reactivated to APRT+ by 5-aza-cytidine and by selection in medium containing adenine, aminopterin and thymidine. Genomic DNA was prepared from eight isolates of independent origin and subjected to bisulphite treatment. This deaminates cytosine to uracil in single-stranded DNA but does not deaminate 5-methyl cytosine. PCR, cloning and sequencing revealed the methylation pattern of CpG doublets in the promoter region of the APRT- gene, whereas the active APRT gene had nonmethylated DNA. CHO strain K1, which has two copies of the APRT+ gene, could also be silenced by the same procedure but at a lower frequency. The availability of the 5-methyl dCTP-induced silencing, 5-aza-CR and a standard mutagen, ethyl methane sulphonate, makes it possible to follow concomitantly the inheritance of active, mutant or silenced gene copies. This analysis demonstrates "dual inheritance" at the APRT locus in CHO cells.
Collapse
Affiliation(s)
- R P Paulin
- CSIRO Division of Molecular Science, Sydney Laboratory, North Ryde, NSW 2113, Australia
| | | | | | | |
Collapse
|
10
|
Kass SU, Wolffe AP. DNA methylation, nucleosomes and the inheritance of chromatin structure and function. NOVARTIS FOUNDATION SYMPOSIUM 1998; 214:22-35; discussion 36-50. [PMID: 9601010 DOI: 10.1002/9780470515501.ch3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replication of the genome during S phase is a crucial period for the establishment and maintenance of programmes of differential gene activity. Existing chromosomal structures are disrupted during replication and reassembled on both daughter chromatids. The capacity to reassemble a particular chromatin structure with defined functional properties reflects the commitment of a cell type to a particular state of determination. The core and linker histones and their modifications, enzymes that modify the histones, DNA methylation and proteins that recognize methylated DNA within chromatin may all play independent or interrelated roles in defining the functional properties of chromatin. Pre-existing protein-DNA interactions and DNA methylation in a parental chromosome will influence the structure and function of daughter chromosomes generating an epigenetic imprint. In this chapter we consider the events occurring at the eukaryotic replication fork, their consequences for pre-existing chromosomal structures and how an epigenetic imprint might be maintained.
Collapse
Affiliation(s)
- S U Kass
- Department of Experimental Molecular Biology
| | | |
Collapse
|
11
|
Abstract
It is known that transformed mammalian cells can spontaneously inactivate genes at low frequency by the de novo methylation of promoter sequences. It is usually assumed that this is due to DNA methyl transferase activity, but an alternative possibility is that 5-methyldCTP is present in these cells and can be directly incorporated into DNA. The ongoing repair of DNA containing 5-methylcytosine will produce 5-methyldeoxycytidine monophosphate (5-methyldCMP), so the question arises whether this can be phosphorylated to 5-methyldCTP. We have tested this using three strains of CHO cells with different levels of 5-methyldCMP deaminase activity. That with the lowest enzyme activity, designated HAM-, has previously been shown to incorporate tritium labelled 5-methyldeoxycytidine into 5-methylcytosine in DNA, with a greater amount of label in thymine. This strain is phenotypically unstable producing cells resistant to bromodeoxyuridine (BrdU) and 6-thioguanine (6-TG) at high frequency. In contrast, the strain with the highest 5-methyldCMP deaminase, designated HAM+, is extremely stable, and the starting strain K1 HAMsl is intermediate between the HAM- and HAM+ phenotypes. We have also shown that human diploid fibroblast strain MRC-5 has a phenotype like HAM+, whereas its SV40 transformed derivative, MRC-5V2 resembles HAM- in having low 5-methyl dCMP deaminase activity, and is phenotypically unstable with regard to 6-TG resistance. It seems that 5-methyldCMP deaminase can be down-regulated in transformed cells, and this can promote de novo methylation by incorporation of 5-methyldCTP derived from 5-methyldCMP.
Collapse
Affiliation(s)
- R Holliday
- Division of Molecular Science, Sydney Laboratory P.O. Box 184, North Ryde, NSW, Sydney, Australia
| | | |
Collapse
|
12
|
Kay PH, Harmon D, Fletcher S, Ziman M, Jacobsen PF, Papadimitriou JM. Variation in the methylation profile and structure of Pax3 and Pax7 among different mouse strains and during expression. Gene 1997; 184:45-53. [PMID: 9016952 DOI: 10.1016/s0378-1119(96)00572-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structural alterations within the myogenic and neurogenic developmental gene Pax7 which involve TaqI recognition sequences have previously been reported. These alterations are associated with differences in the efficiency of regrowth of damaged skeletal muscle. To identify other structural features of Pax genes which may influence skeletal muscle regrowth, variation in the structure and methylation status of Pax7 and the closely related gene Pax3 has been sought among different mouse strains and during gene expression using the restriction endonucleases MspI and HpaII. Following MspI digestion, RFLPs within Pax7 have been found which most likely reflect intron size variability within the paired box. Differences in the size of MspI and HpaII fragments hybridising with Pax7 and Pax3 region specific sub-probes indicate that the paired boxes are hypomethylated, whereas the region encoding the homeodomain of each gene is highly methylated in the spleen and other tissues from adult mice. In the skeletal muscle precursor cell line C2C12, which expresses Pax7 but not Pax3, the homeodomain encoding region of Pax7 is hypomethylated. In spleen cells, the Pax7 paired box is transcribed but the homeodomain encoding region is not. By contrast, both the paired box and the homeobox of Pax3 are hypermethylated in C2C12 cells indicating that generation of alternate transcripts from Pax genes may be controlled by DNA methylation. In contrast to Pax3, reference to the size of fragments hybridising with a Pax7 homeobox specific probe provides evidence for CpNpG methylation within and immediately downstream from the region encoding the homeodomain. Interestingly, CpNpG methylation remains when the Pax7 homeobox is expressed. Structural variation recognised by MspI digestion and differences in the methylation profile of Pax7 are not associated with the ability to regrow damaged skeletal muscle.
Collapse
Affiliation(s)
- P H Kay
- Department of Pathology, University of Western Australia, Nedlands.
| | | | | | | | | | | |
Collapse
|
13
|
Ngô V, Gourdji D, Laverrière JN. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression. Mol Cell Biol 1996; 16:3245-54. [PMID: 8668139 PMCID: PMC231318 DOI: 10.1128/mcb.16.7.3245] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo.
Collapse
Affiliation(s)
- V Ngô
- Groupe de Biologie de la Cellule Neuroendocrine, Unité de Recherche Associe 1115, Centre National de la Recherche Scientifique, Collège de France, Paris, France
| | | | | |
Collapse
|
14
|
Affiliation(s)
- R Holliday
- CSIRO Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, Australia
| |
Collapse
|
15
|
Affiliation(s)
- N De-Groot
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
16
|
Matsuo K, Clay O, Takahashi T, Silke J, Schaffner W. Evidence for erosion of mouse CpG islands during mammalian evolution. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:543-55. [PMID: 8128314 DOI: 10.1007/bf01233381] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In housekeeping and many tissue-specific genes, the promoter is embedded in a so-called CpG island. We have compared the available human and mouse DNA sequences with respect to their CpG island properties. While mouse sequences showed a simple gradient distribution of G + C content and CpG densities, man had a distinct peak of sequences with typical CpG island characteristics. Pairwise comparison of 23 orthologous genes revealed that mouse almost always had a less pronounced CpG island than man, or none at all. In both species the requirements for a functional CpG island may be similar in that most DNA regions with a density of six or more CpG per 100 bp remain unmethylated. However, the mouse has apparently experienced more accidental CpG island methylation, suggested by local TpG and CpA excess. We propose that: (1) in mouse the CpG islands do not represent the ancestral state but have been eroded during evolution, and (2) this erosion may be related to the mouse's small body mass and short life-span, allowing for a more relaxed control of gene activity.
Collapse
Affiliation(s)
- K Matsuo
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| | | | | | | | | |
Collapse
|