1
|
Yang Y, Ma K, Li S, Xiong T. Multifaceted role of nitric oxide in vascular dementia. Med Gas Res 2025; 15:496-506. [PMID: 40300885 DOI: 10.4103/mgr.medgasres-d-24-00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 05/01/2025] Open
Abstract
Vascular dementia is a highly heterogeneous neurodegenerative disorder induced by a variety of factors. Currently, there are no definitive treatments for the cognitive dysfunction associated with vascular dementia. However, early detection and preventive measures have proven effective in reducing the risk of onset and improving patient prognosis. Nitric oxide plays an integral role in various physiological and pathological processes within the central nervous system. In recent years, nitric oxide has been implicated in the regulation of synaptic plasticity and has emerged as a crucial factor in the pathophysiology of vascular dementia. At different stages of vascular dementia, nitric oxide levels and bioavailability undergo dynamic alterations, with a marked reduction in the later stages, which significantly contributes to the cognitive deficits associated with the disease. This review provides a comprehensive review of the emerging role of nitric oxide in the physiological and pathological processes underlying vascular dementia, focusing on its effects on synaptic dysfunction, neuroinflammation, oxidative stress, and blood‒brain barrier integrity. Furthermore, we suggest that targeting the nitric oxide soluble guanylate cyclase-cyclic guanosine monophosphate pathway through specific therapeutic strategies may offer a novel approach for treating vascular dementia, potentially improving both cognitive function and patient prognosis. The review contributes to a better understanding of the multifaceted role of nitric oxide in vascular dementia and to offering insights into future therapeutic interventions.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Kangrong Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shun Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou, Jiangsu Province, China
| |
Collapse
|
2
|
McGrath K, Hey G, MacNeil A, Wahbeh T, Lucke-Wold B, Chowdhury MAB, Amini S, Koch M, Chalouhi N, Hoh B. Functional outcomes following endovascular treatment of vasospasm secondary to aneurysmal subarachnoid Hemorrhage: A Single center retrospective analysis. J Clin Neurosci 2025; 135:111205. [PMID: 40147068 DOI: 10.1016/j.jocn.2025.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/21/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Endovascular treatment of post-hemorrhagic cerebral vasospasm (PHCV) has the potential to improve functional outcomes but there continues to be limited data reported in the literature. OBJECTIVE To retrospectively review our institution's experience treating PHCV endovascularly and report clinical outcome data. METHODS Patients who experienced nontraumatic subarachnoid hemorrhage (SAH) and were treated with endovascular therapy were identified using ICD and CPT codes. Demographic, clinical, and outcome variables were then collected via review of electronic medical records. The primary outcome measure was rate of modified Rankin Score (mRS) ≤ 2 at discharge as well as 1, 3, and 6 months after discharge. Discharge disposition, angiographic response to treatment, and complication rates were secondary outcomes. A subgroup analysis was performed on patients treated with retrievable stents. RESULTS In a 12.5 year period, 1396 patients with nontraumatic SAH were treated, and of these 82/1396 (5.9 %) were treated endovascularly for vasospasm. 200 total interventions were performed on 82 patients. 29.7 % of patients had radiographic delayed cerebral ischemia. The complication rates were 3.5 % per procedure and 4.9 % per patient. 40.7 % of patients had good neurologic outcomes (mRS ≤ 2) at any time point. In-hospital mortality was 11 % and 6-month mortality was 21 %. Higher presenting Glasgow Coma Score (GCS) predicted good neurologic outcome in univariable logistic regression (OR = 1.33, p = 0.026). Patients that underwent mechanical angioplasty were significantly younger than those who did not (46 years vs 53 years, p = 0.003). 11 cases of retrievable stent angioplasty were performed, yielding a complication rate of 9 % which was comparable to the complication rate of patients treated with balloon angioplasty (4.3 %, p = 0.54). CONCLUSIONS Our experience with endovascular treatment of PHCV results in similar functional outcomes and complication rates to the literature. Better presenting GCS predicts good functional outcomes in patients with PHCV treated endovascularly. Patients undergoing mechanical angioplasty tended to be younger. Retrievable stents produced similar rates of complications and good functional outcomes to balloon angioplasty patients.
Collapse
Affiliation(s)
| | - Grace Hey
- University of Florida College of Medicine, USA
| | | | - Tamara Wahbeh
- Lillian S. Wells Department of Neurosurgery, University of Florida, USA
| | | | | | - Shawna Amini
- Lillian S. Wells Department of Neurosurgery, University of Florida, USA
| | - Matthew Koch
- Lillian S. Wells Department of Neurosurgery, University of Florida, USA
| | - Nohra Chalouhi
- Lillian S. Wells Department of Neurosurgery, University of Florida, USA
| | - Brian Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, USA
| |
Collapse
|
3
|
Öztaş Y, Aslan YE, Şener EF, Dana H, Tuğhan E, Günay N, Demiryürek AT. Role of adenosine A 3 receptor and endothelial nitric oxide synthase in patients with traumatic hemorrhagic shock. Eur J Trauma Emerg Surg 2025; 51:167. [PMID: 40198384 PMCID: PMC11978535 DOI: 10.1007/s00068-025-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND The aim of this research is to access the expression of adenosine A3 receptor (ADORA3) and nitric oxide synthase 3 (NOS3) genes and serum levels of ADORA3 and NOS3 in patients with multiple trauma with hemorrhagic shock. MATERIALS AND METHODS The study was performed at Erciyes University between November 2022 and March 2024, in a prospective and controlled manner. Patients diagnosed with traumatic hemorrhagic shock and requiring transfusion in the emergency department were selected as the patients group. Gene expressions were analyzed using quantitative real-time PCR analysis in total RNA samples and serum levels of NOS3 and ADORA3 were detected using ELISA measurements. RESULTS In patients with multiple trauma, adenosine A3 receptor (ADORA3) gene expression showed a significant increase at discharge when compared to healthy controls (P < 0.05). However, serum levels of ADORA3 showed significant decreases at all stages (i.e. at admission, at 24 h, and at discharge) of patients. Although no significant changes were detected in NOS3 gene expression, marked decreases in serum NOS3 levels were observed at admission and at 24 h in multiple trauma patients (P < 0.05). ADORA3 and NOS3 gene expressions were found to be significantly diminished in nonsurvivors. CONCLUSION The study emphasizes the importance of ADORA3 and NOS3 gene expressions in influencing shock progression in multiple trauma patients. The increase in ADORA3 gene expression may play a role in restoring vascular reactivity after traumatic shock. Decreased serum NOS3 and ADORA3 levels can contribute to the shock progression in the pathophysiology of multiple trauma.
Collapse
Affiliation(s)
- Yasin Öztaş
- Department of Emergency Medicine, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Yusuf Ertuğrul Aslan
- Department of Emergency Medicine, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
| | - Elif Funda Şener
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
- Erciyes University Genome and Stem Cell Center, Kayseri, 38280, Turkey
| | - Halime Dana
- Erciyes University Genome and Stem Cell Center, Kayseri, 38280, Turkey
| | - Emre Tuğhan
- Erciyes University Genome and Stem Cell Center, Kayseri, 38280, Turkey
| | - Nurullah Günay
- Department of Emergency Medicine, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | |
Collapse
|
4
|
Hasanpour-Segherlou Z, Butler AA, Candelario-Jalil E, Hoh BL. Role of the Unique Secreted Peptide Adropin in Various Physiological and Disease States. Biomolecules 2024; 14:1613. [PMID: 39766320 PMCID: PMC11674490 DOI: 10.3390/biom14121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy. In cerebrovascular diseases, adropin demonstrates protective effects by reducing blood-brain barrier permeability, brain edema, and infarct size while improving cognitive and sensorimotor functions in ischemic stroke models. The protective effects of adropin extend to preventing endothelial damage, promoting angiogenesis, and mitigating inflammation, making it a promising therapeutic target for cardiovascular and neurodegenerative diseases. This review provides a comprehensive overview of adropin's multifaceted roles in physiological and pathological conditions, as well as our recent work demonstrating adropin's role in subarachnoid hemorrhage-mediated neural injury and delayed cerebral infarction.
Collapse
Affiliation(s)
| | - Andrew A. Butler
- Department of Pharmacology and Physiological Sciences, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brian L. Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
5
|
Su R, Li HL, Wang YM, Zhang L, Zhou JX. Association of dynamic changes in arterial partial pressure of carbon dioxide with neurological outcomes in aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e39197. [PMID: 39640813 PMCID: PMC11620248 DOI: 10.1016/j.heliyon.2024.e39197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Background Cerebral blood flow (CBF) is closely regulated by carbon dioxide (CO2). In patients with aneurysmal subarachnoid hemorrhage (aSAH), abnormal arterial partial pressure of CO2 (PaCO2) might deteriorate brain injuries. Nevertheless, the impact of dynamic PaCO2 fluctuations on neurological outcomes in aSAH patients has not been extensively studied. Our study aimed to investigate the association between dynamic PaCO2 levels and unfavorable neurological outcomes in aSAH patients. Methods In this retrospective observational study, we consecutively enrolled 159 aSAH patients from December 2019 to July 2021. Arterial blood gas measurements within 10 days after intensive care unit (ICU) admission for each patient were recorded to calculate the time-weighted average (TWA)-PaCO2, an indicator representing the dynamic changes in PaCO2 levels. For the association between TWA-PaCO2 levels and unfavorable neurological outcomes in aSAH patients, multivariable logistic analysis was used to explore TWA-PaCO2 levels as categorical variables, and restricted cubic spline (RCS) was used to explore TWA-PaCO2 levels as continuous variables. Results In multivariable logistic analysis, after adjusting confounders, when TWA-PaCO2 35-45 mmHg was as a reference, TWA-PaCO2 < 35 mmHg (odds ratio [OR] 2.15, 95 % confidence interval [CI] 0.83-5.55, P = 0.113) and TWA-PaCO2 > 45 mmHg (OR 8.31, 95 % CI 0.72-96.14, P = 0.090) were not independently associated with unfavorable neurological outcomes (modified Rankin score of 3-6). The RCS shows a "U" shape curve between TWA-PaCO2 levels and unfavorable neurological outcomes, with a nonlinear P-value of 0.023. The lowest ORs of unfavorable neurological outcomes were within PaCO2 32.8-38.1 mmHg. Conclusions Both lower and higher PaCO2 levels are harmful to aSAH patients. PaCO2 in the range of 32.8-38.1 mmHg is associated with lowest unfavorable neurological outcomes.
Collapse
Affiliation(s)
- Rui Su
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Emergency and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Gökyar A, Şahin MH, Karadağ MK, Bahadır S, Zeynal M, Sipal SA, Aydin MD. Intimal Hemorrhage of Basilar Artery Induced by Severe Vasospasm Following Subarachnoid Hemorrhage: The Experimental Analysis. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38382642 DOI: 10.1055/a-2273-5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cerebral vasospasm, a serious complication of subarachnoid hemorrhage (SAH), has been extensively studied for its neurochemical and pathophysiologic mechanisms. However, the contribution of inner elastic membrane dissection and subintimal hemorrhage to basilar artery occlusion remains underexplored. This study investigates inner elastic membrane-related changes in the basilar artery after SAH. METHODS Twenty-four hybrid rabbits were divided into control, sham, and SAH groups, with SAH induced by autologous blood injection. After 2 weeks, basilar artery changes, vasospasm indexes (VSIs), and dissections were evaluated. RESULTS The SAH group showed significantly higher VSI, with vascular wall thickening, luminal narrowing, convoluted smooth muscle cells, intimal elastic membrane disruption, endothelial cell desquamation, and apoptosis. Some SAH animals exhibited subintimal hemorrhage, inner elastic membrane dissection, and ruptures. Basilar arteries with subintimal hemorrhage had notably higher VSI. CONCLUSIONS These findings highlight the role of subintimal hemorrhage and inner elastic membrane dissection in basilar artery occlusion post-SAH, offering valuable insights into vasospasm pathophysiology.
Collapse
Affiliation(s)
- Ahmet Gökyar
- Department of Neurosurgery, Amasya University Faculty of Medicine, Amasya, Turkey
| | - Mehmet Hakan Şahin
- Department of Neurosurgery, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | | | - Sinan Bahadır
- Department of Neurosurgery, Amasya University Faculty of Medicine, Amasya, Turkey
| | - Mete Zeynal
- Department of Neurosurgery, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Sare Altas Sipal
- Department of Pathology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Mehmet D Aydin
- Department of Neurosurgery, Ataturk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
7
|
Dodd WS, Patel D, Laurent D, Lucke-Wold B, Hosaka K, Johnson RD, Chalouhi N, Butler AA, Candelario-Jalil E, Hoh BL. Subarachnoid hemorrhage-associated brain injury and neurobehavioral deficits are reversed with synthetic adropin treatment through sustained Ser1179 phosphorylation of endothelial nitric oxide synthase. FRONTIERS IN STROKE 2024; 3:1371140. [PMID: 39345725 PMCID: PMC11434178 DOI: 10.3389/fstro.2024.1371140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Subarachnoid hemorrhage (SAH) is a life-threatening vascular condition without satisfactory treatment options. The secreted peptide adropin is highly expressed in the human brain and has neuroprotective effects in brain injury models, including actions involving the cerebrovasculature. Here, we report an endothelial nitric oxide synthase (eNOS)-dependent effect of synthetic adropin treatment that reverses the deleterious effects of SAH. Methods We tested the molecular, cellular, and physiological responses of cultured brain microvascular endothelial cells and two mouse models of SAH to treatment using synthetic adropin peptide or vehicle. Results SAH decreases adropin expression in cultured brain microvascular endothelial cells and in murine brain tissue. In two validated mouse SAH models, synthetic adropin reduced cerebral edema, preserved tight junction protein expression, and abolished microthrombosis at 1 day post-SAH. Adropin treatment also prevented delayed cerebral vasospasm, decreased neuronal apoptosis, and reduced sensorimotor deficits at seven days post-SAH. Delaying initial treatment of adropin until 24 h post-SAH preserved the beneficial effect of adropin in preventing vasospasm and sensorimotor deficits. Mechanistically, adropin treatment increased eNOS phosphorylation (Ser1179) at 1 & 7 days post-SAH. Treating eNOS-/- mice with adropin failed to prevent vasospasm or behavioral deficits, indicating a requirement of eNOS signaling. Conclusions Adropin is an effective treatment for SAH, reducing cerebrovascular injury in both the acute (1 day) and delayed (7 days) phases. These findings establish the potential of adropin or adropin mimetics to improve outcomes following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- William S Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Devan Patel
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Dimitri Laurent
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Koji Hosaka
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Richard D Johnson
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Nohra Chalouhi
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Andrew A Butler
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Yang LY, Tang SC, Lee JE, Chen YR, Chen YT, Chen KW, Hsieh ST, Wang KC. Recombinant soluble form of receptor for advanced glycation end products ameliorates microcirculation impairment and neuroinflammation after subarachnoid hemorrhage. Neurotherapeutics 2024; 21:e00312. [PMID: 38177024 DOI: 10.1016/j.neurot.2023.e00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
Impaired cerebral microcirculation after subarachnoid hemorrhage (SAH) has been shown to be related to delayed ischemic neurological deficits (DIND). We previously demonstrated the involvement of the receptor for advanced glycation end products (RAGE) in the pathogenesis of SAH related neuronal death. In the present study, we aimed to investigate the therapeutic effects of a recombinant soluble form of RAGE (sRAGE) on microcirculation impairment following SAH. Intrathecal injection of autologous blood in rats, mixed primary astrocyte and microglia cultures exposed to hemolysates and endothelial cells (ECs) from human brain microvascular exposed to glia-conditioned medium or SAH patient's CSF were used as experimental SAH models in vivo and in vitro. The results indicated that intrathecal administration of recombinant sRAGE significantly ameliorated the vasoconstriction of cortical arterioles and associated perfusion impairment, brain edema, reduced cell death, endothelial dysfunction, and improved motor performance at 24 and 48 h after SAH induction in rats. The in vitro results further showed that recombinant sRAGE significantly reduced astrocyte swelling and microglia activation, in parallel with decreased mRNA expression levels of pro-inflammatory cytokines including interleukin-6 (IL-6) and interleukin-1β (IL-1β) in vitro. Moreover, the in vitro model of SAH-induced p-eNOS and eNOS suppression, along with stress fiber formation in brain microvascular ECs, was effectively reversed by sRAGE treatment and led to a decrease in cleaved-caspase 3 expression. In summary, recombinant sRAGE effectively lessened microcirculation impairment and vascular injury after SAH via the mechanism of anti-inflammation, which may provide a potential therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Ling-Yu Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Er Lee
- Department of Neurology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Yong-Ren Chen
- Non-invasive Cancer Therapy Research Institute, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yi-Tzu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Azeem S, Ashraf M, Kamboh UA, Raza MA, Farooq M, Cheema HA, Tariq S, Choudhary N, Hussain SS, Ashraf N. Association of ABO Blood Group with Delayed Cerebral Ischemia and Clinical Outcomes Following Aneurysmal Subarachnoid Hemorrhage in Pakistan. Asian J Neurosurg 2023; 18:108-116. [PMID: 37056873 PMCID: PMC10089742 DOI: 10.1055/s-0043-1760859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Abstract
Background The ABO blood type, due to its various hemostaseologic properties, has been associated with several vascular diseases, including aneurysmal subarachnoid hemorrhage (aSAH). However, the role of ABO blood type in delayed cerebral ischemia (DCI) onset and other clinical outcomes after aSAH is largely unexplored. This study aimed to investigate the association between ABO blood type and outcomes after aSAH, primarily DCI.
Methods A retrospective analysis was made on the data collected from 175 aSAH patients at a tertiary supraregional neurosurgery department over 5 years. Socio-demographic factors, clinical variables (DCI, mFG, WFNS grade, and Glasgow Outcome Scale at discharge), EVD placement, and aneurysm size were analyzed for their association with ABO blood type.
Results DCI was reported in 25% of patients with ‘O’ blood type and 9.6% with ‘non-O’ blood type. A stepwise logistic regression model showed that after adjusting for BMI, mFG, WFNS grade, and EVD placement, ‘O’ type blood group was an independent risk factor for DCI, greatly increasing the risk of DCI as compared to ‘non-O’ type groups (OR = 3.27, 95% CI: 1.21–8.82).
Conclusion This study provides evidence that individuals with ‘O’ blood type may have a higher risk of DCI onset after aSAH. However, further studies are essential to address the limitations of our work and confirm our findings.
Collapse
Affiliation(s)
- Saleha Azeem
- King Edward Medical University, Lahore, Pakistan
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Mohammad Ashraf
- Wolfson School of Medicine, University of Glasgow, Scotland, United Kingdom
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Usman Ahmad Kamboh
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Muhammad Asif Raza
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Minaam Farooq
- King Edward Medical University, Lahore, Pakistan
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Huzaifa Ahmad Cheema
- King Edward Medical University, Lahore, Pakistan
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Simra Tariq
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Nabeel Choudhary
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| | - Syed Shahzad Hussain
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
- Department of Neurosurgery, Gujranwala Medical College, Gujranwala, Pakistan
| | - Naveed Ashraf
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital Lahore, Pakistan
| |
Collapse
|
10
|
Zhu Y, Zheng H, Chen C. Protective effects of histone deacetylase 6 specific inhibitor tubastatin A on subarachnoid hemorrhage in rats and the underlying mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:172-181. [PMID: 36999463 PMCID: PMC10930345 DOI: 10.11817/j.issn.1672-7347.2023.220167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 04/01/2023]
Abstract
OBJECTIVES Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease. Early brain injury (EBI) and cerebral vasospasm are the main reasons for poor prognosis of SAH patients. The specific inhibitor of histone deacetylase 6 (HDAC6), tubastatin A (TubA), has been proved to have a definite neuroprotective effect on a variety of animal models of acute and chronic central nervous system diseases. However, the neuroprotective effect of TubA on SAH remains unclear. This study aims to investigate the expression and localization of HDAC6 in the early stage of SAH, and to evaluate the protective effects of TubA on EBI and cerebral vasospasm after SAH and the underlying mechanisms. METHODS Adult male SD rats were treated with modified internal carotid artery puncture to establish SAH model. In the first part of the experiment, rats were randomly divided into 6 groups: a sham group, a SAH-3 h group, a SAH-6 h group, a SAH-12 h group, a SAH-24 h group, and a SAH-48 h group. At 3, 6, 12, and 24 h after SAH modeling, the injured cerebral cortex of rats in each group was taken for Western blotting to detect the expression of HDAC6. In addition, the distribution of HDAC6 in the cerebral cortex of the injured side was measured by immunofluorescence double staining in SAH-24 h group rats. In the second part, rats were randomly divided into 4 groups: a sham group, a SAH group, a SAH+TubAL group (giving 25 mg/kg TubA), and a SAH+TubAH group (giving 40 mg/kg TubA). At 24 h after modeling, the injured cerebral cortex tissue was taken for Western blotting to detect the expression levels of HDAC6, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining to detect apoptosis, and hematoxylin and eosin (HE) staining to detect the diameter of middle cerebral artery. RESULTS The protein expression of HDAC6 began to increase at 6 h after SAH (P<0.05), peaked at 24 h (P<0.001), and decreased at 48 h, but there was still a difference compared with the sham group (P<0.05). HDAC6 is mainly expressed in the cytoplasm of the neurons. Compared with the sham group, the neurological score was decreased significantly and brain water content was increased significantly in the SAH group (both P<0.01). Compared with the SAH group, the neurological score was increased significantly and brain water content was decreased significantly in the SAH+TubAH group (both P<0.05), while the improvement of the above indexes was not significant in the SAH+TubAL group (both P>0.05). Compared with the sham group, the expression of eNOS was significantly decreased (P<0.01) and the expressions of iNOS and HDAC6 were significantly increased (P<0.05 and P<0.01, respectively) in the SAH group. Compared with the SAH group, the expression of eNOS was significantly increased, and iNOS and HDAC6 were significantly decreased in the SAH+TubA group (all P<0.05). Compared with the SAH group, the number of TUNEL positive cells was significantly decreased and the diameter of middle cerebral artery was significantly increased in the SAH+TubA group (both P<0.05) . CONCLUSIONS HDAC6 is mainly expressed in neurons and is up-regulated in the cerebral cortex at the early stage of SAH. TubA has protective effects on EBI and cerebral vasospasm in SAH rats by reducing brain edema and cell apoptosis in the early stage of SAH. In addition, its effect of reducing cerebral vasospasm may be related to regulating the expression of eNOS and iNOS.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Haiping Zheng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
11
|
Viderman D, Tapinova K, Abdildin YG. Mechanisms of cerebral vasospasm and cerebral ischaemia in subarachnoid haemorrhage. Clin Physiol Funct Imaging 2023; 43:1-9. [PMID: 36082805 DOI: 10.1111/cpf.12787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022]
Abstract
Subarachnoid haemorrhage (SAH) is a cerebrovascular emergency associated with significant morbidity and mortality. SAH is characterized by heterogeneity, interindividual variation and complexity of pathophysiological responses following extravasation of blood from cerebral circulation. The purpose of this review is to integrate previously established pre-existing factors, pathophysiological pathways and to develop a concept map of mechanisms of SAH-induced cerebral vasospasm and delayed cerebral ischaemia using a systematic approach. We conducted an extensive mapping of a hypothesized sequence of pathophysiological events. Documentation of supporting evidence was done alongside a concept map building. After finalizing the model, we conducted an analysis of the consequences and connections of pathophysiological events. We included the findings of experimental research, focusing on pathophysiological processes. We focused on SAH-induced cerebral vasospasm and delayed cerebral ischaemia as a component of cerebral injury and potential systemic consequences. SAH-induced brain injury occurs within 72 h following haemorrhage. Pathophysiology of cerebral vasospasm may include reduction in NO production, direct activation of calcium channels, upregulating genes involved with inflammation and extracellular matrix remodelling, triggering oxidative stress and free radical damage to smooth muscle and lipid peroxidation of cell membranes, cortical spreading depolarizations, sympathetic activation, finally resulting in the failure of cerebral autoregulation, microthrombosis and cerebral ischaemic injury. This cascade of events might explain why medical therapy often fails to reverse resistant cerebral vasospasm and to prevent cerebral ischaemia.
Collapse
Affiliation(s)
- Dmitriy Viderman
- Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Karina Tapinova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Yerkin G Abdildin
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
12
|
Motwani K, Dodd WS, Laurent D, Lucke-Wold B, Chalouhi N. Delayed cerebral ischemia: A look at the role of endothelial dysfunction, emerging endovascular management, and glymphatic clearance. Clin Neurol Neurosurg 2022; 218:107273. [PMID: 35537284 DOI: 10.1016/j.clineuro.2022.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Delayed cerebral ischemia (DCI) contributes to extensive morbidity and mortality for patients with aneurysmal subarachnoid hemorrhage (SAH). Recent contributions to the basic and translational investigation of DCI have shed light on emerging concepts that may aid in the development of novel therapeutics. A clear association between cerebral vasospasm (CV) and DCI exists, but it is also known that DCI can affect brain parenchyma remote from sites of vasospasm. In this review, we highlight the most recent contributions to the understanding of the underlying pathophysiology of DCI including the emerging role of the glymphatic system. Furthermore, we discuss treatments for DCI, including both pharmacologic therapies and endovascular treatment of vasospasm. There continues to be a disconnect between interventions and targeted treatment against pathophysiology. This review is intended to serve as a catalyst for further research and discovery that can aid in improved treatment options for DCI.
Collapse
Affiliation(s)
- Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | - Nohra Chalouhi
- Department of Neurosurgery, University of Florida, Gainesville, USA
| |
Collapse
|
13
|
Signori D, Magliocca A, Hayashida K, Graw JA, Malhotra R, Bellani G, Berra L, Rezoagli E. Inhaled nitric oxide: role in the pathophysiology of cardio-cerebrovascular and respiratory diseases. Intensive Care Med Exp 2022; 10:28. [PMID: 35754072 PMCID: PMC9234017 DOI: 10.1186/s40635-022-00455-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.
Collapse
Affiliation(s)
- Davide Signori
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, CCM/CVK Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
14
|
Factors Associated with Increased Inpatient Charges Following Aneurysmal Subarachnoid Hemorrhage with Vasospasm: a Nationwide Analysis. Clin Neurol Neurosurg 2022; 218:107259. [DOI: 10.1016/j.clineuro.2022.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
15
|
Fung C, Z'Graggen WJ, Jakob SM, Gralla J, Haenggi M, Rothen HU, Mordasini P, Lensch M, Söll N, Terpolilli N, Feiler S, Oertel MF, Raabe A, Plesnila N, Takala J, Beck J. Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia. Front Neurol 2022; 13:817072. [PMID: 35250821 PMCID: PMC8894247 DOI: 10.3389/fneur.2022.817072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background We demonstrated experimentally that inhaled nitric oxide (iNO) dilates hypoperfused arterioles, increases tissue perfusion, and improves neurological outcome following subarachnoid hemorrhage (SAH) in mice. We performed a prospective pilot study to evaluate iNO in patients with delayed cerebral ischemia after SAH. Methods SAH patients with delayed cerebral ischemia and hypoperfusion despite conservative treatment were included. iNO was administered at a maximum dose of 40 ppm. The response to iNO was considered positive if: cerebral artery diameter increased by 10% in digital subtraction angiography (DSA), or tissue oxygen partial pressure (PtiO2) increased by > 5 mmHg, or transcranial doppler (TCD) values decreased more than 30 cm/sec, or mean transit time (MTT) decreased below 6.5 secs in CT perfusion (CTP). Patient outcome was assessed at 6 months with the modified Rankin Scale (mRS). Results Seven patients were enrolled between February 2013 and September 2016. Median duration of iNO administration was 23 h. The primary endpoint was reached in all patients (five out of 17 DSA examinations, 19 out of 29 PtiO2 time points, nine out of 26 TCD examinations, three out of five CTP examinations). No adverse events necessitating the cessation of iNO were observed. At 6 months, three patients presented with a mRS score of 0, one patient each with an mRS score of 2 and 3, and two patients had died. Conclusion Administration of iNO in SAH patients is safe. These results call for a larger prospective evaluation.
Collapse
Affiliation(s)
- Christian Fung
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Gralla
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Ulrich Rothen
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Lensch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Terpolilli
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Solodovnikova Y, Ivaniuk A, Marusich T, Son A. Meta-analysis of associations of genetic polymorphisms with cerebral vasospasm and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Acta Neurol Belg 2021; 122:1547-1556. [PMID: 34725794 DOI: 10.1007/s13760-021-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are among the most hazardous complications of aneurysmal subarachnoid hemorrhage (aSAH). Genetic factors are thought to play a significant role in the development of both complications. AIM To perform a comprehensive meta-analysis of studies that study the association between different genetic polymorphisms and development of DCI and/or CV. METHODS We searched MEDLINE and Science Direct databases on May 29, 2021, using iterations of the keywords "subarachnoid hemorrhage", "vasospasm", "delayed cerebral ischemia", and "gene". After duplicates were removed, the two reviewers screened the titles of the articles and abstracts independently. A random-effect model was used to calculate the relative risk with 95% CI; a fixed-effect model was additionally explored. RESULTS We pooled data from 16 articles that reported an association between eNOS, apolipoprotein E4 (ApoE4), haptoglobin (Hp), or ryanodine-1 (RYR-1) and CV, DCI, or both. Presence of Hp 2-2 was associated both with CV (RR 2.10, 95% CI 1.33-3.31, p = 0.0014) and DCI (RR 1.57, 95%CI 1.06-2.34, p = 0.026). ApoE4 allele had a borderline association with CV (RR 1.48, 95%CI 0.99-2.21, p = 0.054). CONCLUSION Our meta-analysis supports the association between the presence of the Hp2-2 allele and the occurrence of CV and DCI after aSAH. Further studies investigating this association are needed to reinforce this finding.
Collapse
Affiliation(s)
- Yuliia Solodovnikova
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| | - Alina Ivaniuk
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine.
| | - Tetiana Marusich
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| | - Anatoliy Son
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| |
Collapse
|
17
|
Ehlert A, Starekova J, Manthei G, Ehlert-Gamm A, Flack J, Gessert M, Gerss J, Hesselmann V. Nitric Oxide-Based Treatment of Poor-Grade Patients After Severe Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 32:742-754. [PMID: 31418143 PMCID: PMC7272492 DOI: 10.1007/s12028-019-00809-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Patients with aneurysmal subarachnoid hemorrhage (aSAH) require close treatment in neuro intensive care units (NICUs). The treatments available to counteract secondary deterioration and delayed ischemic events remain restricted; moreover, available neuro-monitoring of comatose patients is undependable. In comatose patients, clinical signs are hidden, and timing interventions to prevent the evolution of a perfusion disorder in response to fixed ischemic brain damage remain a challenge for NICU teams. Consequently, comatose patients often suffer secondary brain infarctions. The outcomes for long-term intubated patients w/wo pupil dilatation are the worst, with only 10% surviving. We previously added two nitroxide (NO) donors to the standard treatment: continuous intravenous administration of Molsidomine in patients with mild-to-moderate aSAH and, if required as a supplement, intraventricular boluses of sodium nitroprusside (SNP) in high-risk patients to overcome the so-called NO-sink effect, which leads to vasospasm and perfusion disorders. NO boluses were guided by clinical status and promptly reversed recurrent episodes of delayed ischemic neurological deficit. In this study, we tried to translate this concept, the initiation of intraventricular NO application on top of continuous Molsidomine infusion, from awake to comatose patients who lack neurological–clinical monitoring but are primarily monitored using frequently applied transcranial Doppler (TCD). Methods In this observational, retrospective, nonrandomized feasibility study, 18 consecutive aSAH comatose/intubated patients (Hunt and Hess IV/V with/without pupil dilatation) whose poor clinical status precluded clinical monitoring received standard neuro-intensive care, frequent TCD monitoring, continuous intravenous Molsidomine plus intraventricular SNP boluses after TCD-confirmed macrospasm during the daytime and on a fixed nighttime schedule. Results Very likely associated with the application of SNP, which is a matter of further investigation, vasospasm-related TCD findings promptly and reliably reversed or substantially weakened (p < 0.0001) afterward. Delayed cerebral ischemia (DCI) occurred only during loose, low-dose or interrupted treatment (17% vs. an estimated 65% with secondary infarctions) in 17 responders. However, despite their worse initial condition, 29.4% of the responders survived (expected 10%) and four achieved Glasgow Outcome Scale Extended (GOSE) 8–6, modified Rankin Scale (mRS) 0–1 or National Institutes of Health Stroke Scale (NIHSS) 0–2. Conclusions Even in comatose/intubated patients, TCD-guided dual-compartment administration of NO donors probably could reverse macrospasm and seems to be feasible. The number of DCI was much lower than expected in this specific subgroup, indicating that this treatment possibly provides a positive impact on outcomes. A randomized trial should verify or falsify our results.
Collapse
Affiliation(s)
- Angelika Ehlert
- Department of Neurosurgery, Asklepios Hospital St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany.
| | - Jitka Starekova
- Department of Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Germany
| | - Gerd Manthei
- Department of Neurosurgery, Asklepios Hospital St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany
| | | | - Joachim Flack
- Doctor's Office, Breitenfelderstr. 7, 20251, Hamburg, Germany
| | - Marie Gessert
- Department of Neurology, Asklepios Hospital St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University Hospital Münster, Schmeddingstr. 56, 48149, Münster, Germany
| | - Volker Hesselmann
- Department of Neuroradiology, Asklepios Hospital Nord, Tangstedter Landstr. 400, 22417, Hamburg, Germany
| |
Collapse
|
18
|
Solar P, Mackerle Z, Joukal M, Jancalek R. Non-steroidal anti-inflammatory drugs in the pathophysiology of vasospasms and delayed cerebral ischemia following subarachnoid hemorrhage: a critical review. Neurosurg Rev 2020; 44:649-658. [PMID: 32124117 DOI: 10.1007/s10143-020-01276-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition associated with the development of early brain injury (EBI) and delayed cerebral ischemia (DCI). Pharmacological treatment of vasospasm following aSAH currently mainly comprises nimodipine administration. In the past few years, many drugs that can potentially benefit cases of subarachnoid hemorrhage have become available. The objective of this review is to critically assess the effects of non-steroidal anti-inflammatory drugs (NSAIDs) following aSAH. A systematic literature review was conducted following PRISMA guidelines. The search was aimed at studies addressing aSAH and NSAIDs during the 2010 to 2019 period, and it yielded 13 articles. Following the application of search criteria, they were divided into two groups, one containing 6 clinical articles and the other containing 7 experimental articles on animal models of aSAH. Inflammatory cerebral changes after aneurysm rupture contribute to the development of EBI, DCI and cerebral vasospasm. It appears that NSAIDs (especially coxibs) are even more effective in reducing vasospasm than nimodipine. Other beneficial effects of NSAIDs include reduction in mortality, improved functional outcome and increased hypoaggregability. However, despite these positive effects, there is only one randomized, double-blind, placebo-controlled trial showing a tendency towards a better outcome with lower incidence of vasospasm or mortality in patients following aSAH.
Collapse
Affiliation(s)
- Peter Solar
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Mackerle
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
| | - Marek Joukal
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
19
|
Luo F, Wu L, Zhang Z, Zhu Z, Liu Z, Guo B, Li N, Ju J, Zhou Q, Li S, Yang X, Mak S, Han Y, Sun Y, Wang Y, Zhang G, Zhang Z. The dual-functional memantine nitrate MN-08 alleviates cerebral vasospasm and brain injury in experimental subarachnoid haemorrhage models. Br J Pharmacol 2019; 176:3318-3335. [PMID: 31180578 DOI: 10.1111/bph.14763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cerebral vasospasm and neuronal apoptosis after subarachnoid haemorrhage (SAH) is the major cause of morbidity and mortality in SAH patients. So far, single-target agents have not prevented its occurrence. Memantine, a non-competitive NMDA re3ceptor antagonist, is known to alleviate brain injury and vasospasm in experimental models of SAH. Impairment of NO availability also contributes to vasospasm. Recently, we designed and synthesized a memantine nitrate MN-08, which has potent dual functions: neuroprotection and vasodilation. Here, we have tested the therapeutic effects of MN-08 in animal models of SAH. EXPERIMENTAL APPROACH Binding to NMDA receptors (expressed in HEK293 cells), NO release and vasodilator effects of MN-08 were assessed in vitro. Therapeutic effects of MN-08 were investigated in vivo, using rat and rabbit SAH models. KEY RESULTS MN-08 bound to the NMDA receptor, slowly releasing NO in vitro and in vivo. Consequently, MN-08 relaxed the pre-contracted middle cerebral artery ex vivo and increased blood flow velocity in small vessels of the mouse cerebral cortex. It did not, however, lower systemic blood pressure. In an endovascular perforation rat model of SAH, MN-08 improved the neurological scores and ameliorated cerebral vasospasm. Moreover, MN-08 also alleviated cerebral vasospasm in a cisterna magna single-injection model in rabbits. MN-08 attenuated neural cell apoptosis in both rat and rabbit models of SAH. Importantly, the therapeutic benefit of MN-08 was greater than that of memantine. CONCLUSION AND IMPLICATIONS MN-08 has neuroprotective potential and can ameliorate vasospasm in experimental SAH models.
Collapse
Affiliation(s)
- Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zhixiang Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Ning Li
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Jun Ju
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, Shenzhen, China
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
20
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
21
|
Abstract
PURPOSE OF REVIEW With recent research trying to explore the pathophysiologic mechanisms behind vasospasm, newer pharmacological and nonpharmacological treatments are being targeted at various pathways involved. This review is aimed at understanding the mechanisms and current and future therapies available to treat vasospasm. RECENT FINDINGS Computed tomography perfusion is a useful alternative tool to digital subtraction angiography to diagnose vasospasm. Various biomarkers have been tried to predict the onset of vasospasm but none seems to be helpful. Transcranial Doppler still remains a useful tool at the bedside to screen and follow up patients with vasospasm. Hypertension rather than hypervolemia and hemodilution in 'Triple-H' therapy has been found to be helpful in reversing the vasospasm. Hyperdynamic therapy in addition to hypertension has shown promising effects. Endovascular approaches with balloon angioplasty and intra-arterial nimodipine, nicardipine, and milrinone have shown consistent benefits. Endothelin receptor antagonists though relieved vasospasm, did not show any benefit on functional outcome. SUMMARY Endovascular therapy has shown consistent benefit in relieving vasospasm. An aggressive combination therapy through various routes seems to be the most useful approach to reduce the complications of vasospasm.
Collapse
|
22
|
Dhar R, Washington C, Diringer M, Zazulia A, Jafri H, Derdeyn C, Zipfel G. Acute Effect of Intravenous Sildenafil on Cerebral Blood Flow in Patients with Vasospasm After Subarachnoid Hemorrhage. Neurocrit Care 2017; 25:201-4. [PMID: 26940913 DOI: 10.1007/s12028-016-0243-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The phosphodiesterase-5 inhibitor sildenafil has been shown to attenuate delayed cerebral ischemia (DCI) and improve neurologic function in experimental subarachnoid hemorrhage (SAH). We recently demonstrated that it could improve cerebral vasospasm (CVS) in humans after SAH. However, successful therapies for DCI must also restore cerebral blood flow (CBF) and/or autoregulatory capacity. In this study, we tested the effects of sildenafil on CBF in SAH patients at-risk for DCI. METHODS Six subjects with angiographically confirmed CVS received 30-mg of intravenous sildenafil (mean 9 ± 2 days after aneurysmal SAH). Each underwent (15)O-PET imaging to measure global and regional CBF at baseline and post-sildenafil. RESULTS Mean arterial pressure declined by 10 mm Hg on average post-sildenafil (8 %, p = 0.01), while ICP was unchanged. There was no change in global CBF (mean 34.5 ± 7 ml/100g/min at baseline vs. 33.9 ± 8.0 ml/100g/min post-sildenafil, p = 0.84). The proportion of brain regions with low CBF (<25 ml/100g/min) was also unchanged after sildenafil infusion. CONCLUSIONS Infusion of sildenafil does not lead to a change in global or regional perfusion despite a significant reduction in cerebral perfusion pressure. While this could reflect the ineffectiveness of sildenafil-induced proximal vasodilatation to alter brain perfusion, it also suggests that cerebral autoregulatory function was preserved in this group. Future studies should assess whether sildenafil can restore or enhance autoregulation after SAH.
Collapse
Affiliation(s)
- Rajat Dhar
- Division of Neurocritical Care, Department of Neurology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Chad Washington
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael Diringer
- Division of Neurocritical Care, Department of Neurology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Allyson Zazulia
- Division of Neurocritical Care, Department of Neurology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Hussain Jafri
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Colin Derdeyn
- Division of Neurocritical Care, Department of Neurology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, 63110, USA.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Gregory Zipfel
- Division of Neurocritical Care, Department of Neurology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO, 63110, USA.,Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
23
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
24
|
Trebatická J, Dukát A, Ďuračková Z, Muchová J. Cardiovascular diseases, depression disorders and potential effects of omega-3 fatty acids. Physiol Res 2017; 66:363-382. [PMID: 28248536 DOI: 10.33549/physiolres.933430] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) and depressive disorders (DD) are two of the most prevalent health problems in the world. Although CVD and depression have different origin, they share some common pathophysiological characteristics and risk factors, such as the increased production of proinflammatory cytokines, endothelial dysfunction, blood flow abnormalities, decreased glucose metabolism, elevated plasma homocysteine levels, oxidative stress and disorder in vitamin D metabolism. Current findings confirm the common underlying factors for both pathologies, which are related to dramatic dietary changes in the mid-19th century. By changing dietary ratio of omega-6 to omega-3 fatty acids from 1:1 to 15-20:1 some changes in metabolism were induced, such as increased pro-inflammatory mediators and modulations of different signaling pathways following pathophysiological response related to both, cardiovascular diseases and depressive disorders.
Collapse
Affiliation(s)
- J Trebatická
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Comenius University and Child University Hospital, Bratislava, Slovakia; Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
25
|
The Role of ABO Blood Group in Cerebral Vasospasm, Associated Intracranial Hemorrhage, and Delayed Cerebral Ischemia in 470 Patients with Subarachnoid Hemorrhage. World Neurosurg 2017; 97:532-537. [DOI: 10.1016/j.wneu.2016.10.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
26
|
Terpolilli NA, Feiler S, Dienel A, Müller F, Heumos N, Friedrich B, Stover J, Thal S, Schöller K, Plesnila N. Nitric oxide inhalation reduces brain damage, prevents mortality, and improves neurological outcome after subarachnoid hemorrhage by resolving early pial microvasospasms. J Cereb Blood Flow Metab 2016; 36:2096-2107. [PMID: 26661144 PMCID: PMC5363657 DOI: 10.1177/0271678x15605848] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023]
Abstract
Subarachnoid hemorrhage is a stroke subtype with particularly bad outcome. Recent findings suggest that constrictions of pial arterioles occurring early after hemorrhage may be responsible for cerebral ischemia and - subsequently - unfavorable outcome after subarachnoid hemorrhage. Since we recently hypothesized that the lack of nitric oxide may cause post-hemorrhagic microvasospasms, our aim was to investigate whether inhaled nitric oxide, a treatment paradigm selectively delivering nitric oxide to ischemic microvessels, is able to dilate post-hemorrhagic microvasospasms; thereby improving outcome after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to experimental SAH. Three hours after subarachnoid hemorrhage pial artery spasms were quantified by intravital microscopy, then mice received inhaled nitric oxide or vehicle. For induction of large artery spasms mice received an intracisternal injection of autologous blood. Inhaled nitric oxide significantly reduced number and severity of subarachnoid hemorrhage-induced post-hemorrhage microvasospasms while only having limited effect on large artery spasms. This resulted in less brain-edema-formation, less hippocampal neuronal loss, lack of mortality, and significantly improved neurological outcome after subarachnoid hemorrhage. This suggests that spasms of pial arterioles play a major role for the outcome after subarachnoid hemorrhage and that lack of nitric oxide is an important mechanism of post-hemorrhagic microvascular dysfunction. Reversing microvascular dysfunction by inhaled nitric oxide might be a promising treatment strategy for subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Nicole A Terpolilli
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany.,Institute for Surgical Research, University of Munich Medical Center, Munich, Germany.,Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich, Germany
| | - Sergej Feiler
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Ari Dienel
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany.,Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Frank Müller
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Nicole Heumos
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany.,Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Benjamin Friedrich
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - John Stover
- Department of Surgery, University of Zurich, Switzerland
| | - Serge Thal
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Karsten Schöller
- Department of Neurosurgery, University of Munich Medical Center, Munich, Germany.,Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Surgical Research, University of Munich Medical Center, Munich, Germany .,Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
27
|
Ehlert A, Manthei G, Hesselmann V, Mathias K, Bein B, Pluta R. A Case of Hyperacute Onset of Vasospasm After Aneurysmal Subarachnoid Hemorrhage and Refractory Vasospasm Treated with Intravenous and Intraventricular Nitric Oxide: A Mini Review. World Neurosurg 2016; 91:673.e11-8. [PMID: 27109628 DOI: 10.1016/j.wneu.2016.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND A case of hyperacute vasospasm, indicating a poor prognosis after aneurysmal subarachnoid hemorrhage (SAH), is reported, and a review is presented of the literature addressing use of nitric oxide (NO) donors in cases of refractory vasospasm and recurrent delayed cortical ischemias (DCI). CASE DESCRIPTION A 65-year-old woman was admitted within 1 hour after aneurysmal SAH (Hunt and Hess grade III, Fisher modified by Frontera grade IV). A hyperacute vasospasm had been confirmed arteriographically, the right middle cerebral artery (MCA) aneurysm was immediately coiled and a standard antivasospastic therapy was started. Within 48 hours, the patient developed cerebral vasospasm with DCI. Because the standard therapy failed to control clinical symptoms and to address severe vasospasm, an individualized rescue treatment with NO donors was initiated. A continuous intravenous molsidomine infusion was started and clinical stabilization was achieved for a week (Hunt and Hess grade I; World Federation of Neurological Surgeons grade I; Glasgow Coma Scale score, 15) after which vasospasm and DCI recurred. During a subsequent DCI, we escalated NO donor therapy by adding intraventricular boluses of sodium nitroprusside (SNP). Over the course of the following 22 days, 7 transient DCIs (Glasgow Coma Scale score, 8) were treated with boluses of SNP during continued molsidomine therapy and each time vasospasm and DCI were completely reversed. Despite initial poor prognosis, the clinical outcome was excellent; at 3, 6, and 12 months follow-up the patient's modified National Institutes of Health-Stroke Scale and modified Rankin Scale scores were 0, with no cognitive deficits. CONCLUSIONS The review of the literature suggested that combined intravenous molsidomine with intraventricular SNP treatment reversed refractory, recurrent vasospasm and DCIs probably by addressing the hemoglobin NO sink effect, NO depletion, and decreased NO availability after aneurysmal SAH.
Collapse
Affiliation(s)
- Angelika Ehlert
- Department of Neurosurgery, Asklepios Klinik St. Georg, Hamburg, Germany.
| | - Gerd Manthei
- Department of Neurosurgery, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Volker Hesselmann
- Department of Neuroradiology, Asklepios Clinic North, Hamburg, Germany
| | - Klaus Mathias
- Department of Neuroradiology, Asklepios Clinic, St. Georg, Hamburg, Germany
| | - Berthold Bein
- Department of Anesthesiology, Asklepios Clinic, St. Georg, Hamburg, Germany
| | - Ryszard Pluta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Kerz T, Boor S, Ulrich A, Beyer C, Hechtner M, Mueller-Forell W. Endovascular therapy for vasospasm after aneurysmatic subarachnoid hemorrhage. Br J Neurosurg 2016; 30:549-53. [PMID: 27080311 DOI: 10.3109/02688697.2016.1173193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Balloon angioplasty and/or selective intra-arterial vasodilator therapies are treatment options in patients with vasospasm after subarachnoid hemorrhage (SAH). We analyzed the effect of balloon angioplasty and/or selective intra-arterial vasodilator therapy in our patients. METHODS Twenty-six patients (vasodilation group, VDT) were treated with intra-arterial nimodipine. The balloon angioplasty with nimodiopine-group (BAP-N group) comprised 21 patients. The primary endpoint of this study was successful angiographic vessel dilation in vasospastic vessels after balloon angioplasty, together with nimodipine (BAP-N group), compared to intra-arterial vasodilator therapy (VDT group) with nimodipine alone. RESULTS A significant effect of angioplasty plus nimodipine was found in the central arteries (composite endpoint) with an OR of 2.4 (95% CI: 1.4-4.2], p = 0.002), indicating a chance of improvement of the BAP-N group of more than twice compared to nimodipine infusions alone. Significant advantages for BAP-N-therapy were also encountered in the internal carotid artery (OR 5.4, p < 0.001) and basilar artery (OR 29.7, p = 0.003). A joint analysis of all arteries combined failed to show significant benefit of BAP-N therapy (OR 1.5, p = 0.079), which was also true for cerebral peripheral arteries (OR 0.77, p = 0.367). There was no difference in clinical outcome between both groups. CONCLUSIONS In SAH patients with vasospasm, a combination therapy of balloon angioplasty and intra-arterial nimodipine resulted in a more than doubled vasodilative effect in the central cerebral arteries compared to the sole infusion of nimodipine. Regarding the ICA and BA arteries, this beneficial effect was even more pronounced. Although there was a tendency of better effects of the BAP-N group, regarding the overall effect in all territories combined, this failed to reach statistical evidence. In cerebral peripheral arteries, no differences were observed, and there was no difference in clinical outcome, too.
Collapse
Affiliation(s)
- Thomas Kerz
- a Department of Neurosurgery , University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Stephan Boor
- b Institute of Neuroradiology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Anna Ulrich
- c Department of Internal Medicine , Evangelisches Krankenhaus , Bad Duerckheim , Germany
| | - Christian Beyer
- a Department of Neurosurgery , University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Marlene Hechtner
- d Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Wibke Mueller-Forell
- b Institute of Neuroradiology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
29
|
Bonow RH, Silber JR, Enzmann DR, Beauchamp NJ, Ellenbogen RG, Mourad PD. Towards use of MRI-guided ultrasound for treating cerebral vasospasm. J Ther Ultrasound 2016; 4:6. [PMID: 26929821 PMCID: PMC4770693 DOI: 10.1186/s40349-016-0050-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/19/2016] [Indexed: 12/23/2022] Open
Abstract
Cerebral vasospasm is a major cause of morbidity and mortality in patients with subarachnoid hemorrhage (SAH), causing delayed neurological deficits in as many as one third of cases. Existing therapy targets induction of cerebral vasodilation through use of various drugs and mechanical means, with a range of observed efficacy. Here, we perform a literature review supporting our hypothesis that transcranially delivered ultrasound may have the ability to induce therapeutic cerebral vasodilation and, thus, may one day be used therapeutically in the context of SAH. Prior studies demonstrate that ultrasound can induce vasodilation in both normal and vasoconstricted blood vessels in peripheral tissues, leading to reduced ischemia and cell damage. Among the proposed mechanisms is alteration of several nitric oxide (NO) pathways, where NO is a known vasodilator. While in vivo studies do not point to a specific physical mechanism, results of in vitro studies favor cavitation induction by ultrasound, where the associated shear stresses likely induce NO production. Two papers discussed the effects of ultrasound on the cerebral vasculature. One study applied clinical transcranial Doppler ultrasound to a rodent complete middle cerebral artery occlusion model and found reduced infarct size. A second involved the application of pulsed ultrasound in vitro to murine brain endothelial cells and showed production of a variety of vasodilatory chemicals, including by-products of arachidonic acid metabolism. In sum, nine reviewed studies demonstrated evidence of either cerebrovascular dilation or elaboration of vasodilatory compounds. Of particular interest, all of the reviewed studies used ultrasound capable of transcranial application: pulsed ultrasound, with carrier frequencies ranging between 0.5 and 2.0 MHz, and intensities not substantially above FDA-approved intensity values. We close by discussing potential specific treatment paradigms of SAH and other cerebral ischemic disorders based on MRI-guided transcranial ultrasound.
Collapse
Affiliation(s)
- Robert H Bonow
- Department of Neurological Surgery, University of Washington, 325 9th Ave, Box 359924, Seattle, WA 98104 USA
| | - John R Silber
- Department of Neurological Surgery, University of Washington, 325 9th Ave, Box 359924, Seattle, WA 98104 USA
| | - Dieter R Enzmann
- Department of Radiology, University of California Los Angeles, 924 Westwood Blvd. Suite 805, Los Angeles, CA 90024 USA
| | - Norman J Beauchamp
- Department of Radiology, University of Washington, RR-218 Health Science Building, 1959 NE Pacific St, Seattle, WA 98195 USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, 325 9th Ave, Box 359924, Seattle, WA 98104 USA
| | - Pierre D Mourad
- Department of Neurological Surgery, University of Washington, 325 9th Ave, Box 359924, Seattle, WA 98104 USA ; Department of Radiology, University of Washington, RR-218 Health Science Building, 1959 NE Pacific St, Seattle, WA 98195 USA ; Division of Engineering, University of Washington, 18115 Campus Way NE, Bothell, WA 98011 USA
| |
Collapse
|
30
|
Kim E, Kim HC, Park SY, Lim YJ, Ro SH, Cho WS, Jeon YT, Hwang JW, Park HP. Effect of Red Blood Cell Transfusion on Unfavorable Neurologic Outcome and Symptomatic Vasospasm in Patients with Cerebral Aneurysmal Rupture: Old versus Fresh Blood. World Neurosurg 2015; 84:1877-86. [DOI: 10.1016/j.wneu.2015.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023]
|
31
|
Washington CW, Derdeyn CP, Dhar R, Arias EJ, Chicoine MR, Cross DT, Dacey RG, Han BH, Moran CJ, Rich KM, Vellimana AK, Zipfel GJ. A Phase I proof-of-concept and safety trial of sildenafil to treat cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg 2015; 124:318-27. [PMID: 26314998 DOI: 10.3171/2015.2.jns142752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Studies show that phosphodiesterase-V (PDE-V) inhibition reduces cerebral vasospasm (CVS) and improves outcomes after experimental subarachnoid hemorrhage (SAH). This study was performed to investigate the safety and effect of sildenafil (an FDA-approved PDE-V inhibitor) on angiographic CVS in SAH patients. METHODS A2-phase, prospective, nonrandomized, human trial was implemented. Subarachnoid hemorrhage patients underwent angiography on Day 7 to assess for CVS. Those with CVS were given 10 mg of intravenous sildenafil in the first phase of the study and 30 mg in the second phase. In both, angiography was repeated 30 minutes after infusion. Safety was assessed by monitoring neurological examination findings and vital signs and for the development of adverse reactions. For angiographic assessment, in a blinded fashion, pre- and post-sildenafil images were graded as "improvement" or "no improvement" in CVS. Unblinded measurements were made between pre- and post-sildenafil angiograms. RESULTS Twelve patients received sildenafil; 5 patients received 10 mg and 7 received 30 mg. There were no adverse reactions. There was no adverse effect on heart rate or intracranial pressure. Sildenafil resulted in a transient decline in mean arterial pressure, an average of 17% with a return to baseline in an average of 18 minutes. Eight patients (67%) were found to have a positive angiographic response to sildenafil, 3 (60%) in the low-dose group and 5 (71%) in the high-dose group. The largest degree of vessel dilation was an average of 0.8 mm (range 0-2.1 mm). This corresponded to an average percentage increase in vessel diameter of 62% (range 0%-200%). CONCLUSIONS The results from this Phase I safety and proof-of-concept trial assessing the use of intravenous sildenafil in patients with CVS show that sildenafil is safe and well tolerated in the setting of SAH. Furthermore, the angiographic data suggest that sildenafil has a positive impact on human CVS.
Collapse
Affiliation(s)
- Chad W Washington
- Departments of 1 Neurological Surgery.,Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Colin P Derdeyn
- Departments of 1 Neurological Surgery.,Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | | | | | | | - DeWitte T Cross
- Departments of 1 Neurological Surgery.,Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | | | | | - Christopher J Moran
- Departments of 1 Neurological Surgery.,Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Keith M Rich
- Departments of 1 Neurological Surgery.,Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | | | | |
Collapse
|
32
|
Attia MS, Lass E, Loch Macdonald R. Nitric oxide synthases: three pieces to the puzzle? ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:131-5. [PMID: 25366612 DOI: 10.1007/978-3-319-04981-6_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Subarachnoid hemorrhage remains to be a devastating diagnosis in this day and age, with very few effective interventions. Rising evidence is now pointing towards the marked importance of secondary complications after the hemorrhage, and its active role in morbidity and mortality of this stroke. This review will focus on the role of Nitric Oxide Synthases (NOSes) the role they play in the pathogenesis of SAH.
Collapse
Affiliation(s)
- Mohammed Sabri Attia
- Division of Neurosurgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | | | | |
Collapse
|
33
|
Milner E, Johnson AW, Nelson JW, Harries MD, Gidday JM, Han BH, Zipfel GJ. HIF-1α Mediates Isoflurane-Induced Vascular Protection in Subarachnoid Hemorrhage. Ann Clin Transl Neurol 2015; 2:325-37. [PMID: 25909079 PMCID: PMC4402079 DOI: 10.1002/acn3.170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023] Open
Abstract
Objective Outcome after aneurysmal subarachnoid hemorrhage (SAH) depends critically on delayed cerebral ischemia (DCI) – a process driven primarily by vascular events including cerebral vasospasm, microvessel thrombosis, and microvascular dysfunction. This study sought to determine the impact of postconditioning – the phenomenon whereby endogenous protection against severe injury is enhanced by subsequent exposure to a mild stressor – on SAH-induced DCI. Methods Adult male C57BL/6 mice were subjected to sham, SAH, or SAH plus isoflurane postconditioning. Neurological outcome was assessed daily via sensorimotor scoring. Contributors to DCI including cerebral vasospasm, microvessel thrombosis, and microvascular dysfunction were measured 3 days later. Isoflurane-induced changes in hypoxia-inducible factor 1alpha (HIF-1α)-dependent genes were assessed via quantitative polymerase chain reaction. HIF-1α was inhibited pharmacologically via 2-methoxyestradiol (2ME2) or genetically via endothelial cell HIF-1α-null mice (EC-HIF-1α-null). All experiments were performed in a randomized and blinded fashion. Results Isoflurane postconditioning initiated at clinically relevant time points after SAH significantly reduced cerebral vasospasm, microvessel thrombosis, microvascular dysfunction, and neurological deficits in wild-type (WT) mice. Isoflurane modulated HIF-1α-dependent genes – changes that were abolished in 2ME2-treated WT mice and EC-HIF-1α-null mice. Isoflurane-induced DCI protection was attenuated in 2ME2-treated WT mice and EC-HIF-1α-null mice. Interpretation Isoflurane postconditioning provides strong HIF-1α-mediated macro- and microvascular protection in SAH, leading to improved neurological outcome. These results implicate cerebral vessels as a key target for the brain protection afforded by isoflurane postconditioning, and HIF-1α as a critical mediator of this vascular protection. They also identify isoflurane postconditioning as a promising novel therapeutic for SAH.
Collapse
Affiliation(s)
- Eric Milner
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Program in Neuroscience, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Andrew W Johnson
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Michael D Harries
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Jeffrey M Gidday
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Byung Hee Han
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine St. Louis, Missouri, 63108 ; Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis, Missouri, 63108 ; Department of Neurology, Washington University School of Medicine St. Louis, Missouri, 63108
| |
Collapse
|
34
|
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside. Exp Neurol 2014; 263:235-43. [PMID: 25447937 DOI: 10.1016/j.expneurol.2014.10.017] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) is a key signalling molecule in the regulation of cerebral blood flow. This review summarises current evidence regarding the role of NO in the regulation of cerebral blood flow at rest, under physiological conditions, and after brain injury, focusing on subarachnoid haemorrhage, traumatic brain injury, and ischaemic stroke and following cardiac arrest. We also review the role of NO in the response to hypoxic insult in the developing brain. NO depletion in ischaemic brain tissue plays a pivotal role in the development of subsequent morbidity and mortality through microcirculatory disturbance and disordered blood flow regulation. NO derived from endothelial nitric oxide synthase (eNOS) appears to have neuroprotective properties. However NO derived from inducible nitric oxide synthase (iNOS) may have neurotoxic effects. Cerebral NO donor agents, for example sodium nitrite, appear to replicate the effects of eNOS derived NO, and therefore have neuroprotective properties. This is true in both the adult and immature brain. We conclude that these agents should be further investigated as targeted pharmacotherapy to protect against secondary brain injury.
Collapse
Affiliation(s)
- P S Garry
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - M Ezra
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M J Rowland
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - J Westbrook
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
35
|
Increased cerebrospinal fluid concentrations of asymmetric dimethylarginine correlate with adverse clinical outcome in subarachnoid hemorrhage patients. J Clin Neurosci 2014; 21:1404-8. [DOI: 10.1016/j.jocn.2013.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022]
|
36
|
Faust K, Horn P, Schneider UC, Vajkoczy P. Blood pressure changes after aneurysmal subarachnoid hemorrhage and their relationship to cerebral vasospasm and clinical outcome. Clin Neurol Neurosurg 2014; 125:36-40. [PMID: 25083804 DOI: 10.1016/j.clineuro.2014.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/04/2014] [Accepted: 06/14/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cerebral vasospasm (VS) and resulting delayed ischemic brain injury constitute the most severe secondary complication after subarachnoid hemorrhage (SAH). Identification of early clinical predictors of developing vasospasm and poor outcome has remained a major challenge in neurointensive care medicine. Aim of the present study was analyze the relevance of spontaneous changes in blood pressures and their predictive value for predicting vasospasm as well as adverse clinical outcome. METHODS 98 aneurysmal SAH patients were analyzed retrospectively. Patients were divided into two study groups: (1) VS+ (developing VS) and (2) VS- (not developing VS). Repeat-angiography was routinely performed on day 8 after SAH or earlier if clinical signs were suggestive for overt vasospasm. Systolic, diastolic and mean blood pressures were averaged hourly and plotted over time. Secondly, blood pressure (BP)-progression was analyzed with respect to clinical outcomes as assessed by the Glasgow outcome scale. RESULTS Mean, systolic, and diastolic blood pressure values progressed in both VS- and VS+ cohorts over time. However, as early as 4 days after SAH a significant dissociation of RR curves was observed between the groups with patients in the VS+ group displaying a significantly higher slope coefficient of blood pressure elevation. An increase of mean arterial pressure >20% within the first 4 days was predictive of developing vasospasm. Elevation of mean arterial blood pressure in the VS+ group was mainly attributable to changes in diastolic pressure. Elevation of mean arterial blood pressure >25% within the first week after SAH was associated with unfavorable outcome. CONCLUSIONS SAH leads to spontaneous and progressive elevations in mean arterial blood pressure. Vasospasm might be anticipated by identifying early elevations of mean arterial blood pressure. Finally, spontaneous elevations of mean arterial blood pressure correlate with poorer outcomes.
Collapse
Affiliation(s)
- Katharina Faust
- Department of Neurosurgery, Charité University, Berlin, Germany.
| | - Peter Horn
- Department of Neurosurgery, Charité University, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Charité University, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University, Berlin, Germany
| |
Collapse
|
37
|
To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:628597. [PMID: 24967389 PMCID: PMC4055362 DOI: 10.1155/2014/628597] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Delayed cerebral vasospasm has classically been considered the most important and treatable cause of mortality and morbidity in patients with aneurysmal subarachnoid hemorrhage (aSAH). Secondary ischemia (or delayed ischemic neurological deficit, DIND) has been shown to be the leading determinant of poor clinical outcome in patients with aSAH surviving the early phase and cerebral vasospasm has been attributed to being primarily responsible. Recently, various clinical trials aimed at treating vasospasm have produced disappointing results. DIND seems to have a multifactorial etiology and vasospasm may simply represent one contributing factor and not the major determinant. Increasing evidence shows that a series of early secondary cerebral insults may occur following aneurysm rupture (the so-called early brain injury). This further aggravates the initial insult and actually determines the functional outcome. A better understanding of these mechanisms and their prevention in the very early phase is needed to improve the prognosis. The aim of this review is to summarize the existing literature on this topic and so to illustrate how the presence of cerebral vasospasm may not necessarily be a prerequisite for DIND development. The various factors determining DIND that worsen functional outcome and prognosis are then discussed.
Collapse
|
38
|
Therapeutic implications of estrogen for cerebral vasospasm and delayed cerebral ischemia induced by aneurysmal subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:727428. [PMID: 24724095 PMCID: PMC3958795 DOI: 10.1155/2014/727428] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022]
Abstract
Cerebral vasospasm (CV) remains the leading cause of delayed morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH). However, increasing evidence supports etiologies of delayed cerebral ischemia (DCI) other than CV. Estrogen, specifically 17 β -estradiol (E2), has potential therapeutic implications for ameliorating the delayed neurological deterioration which follows aneurysmal SAH. We review the causes of CV and DCI and examine the evidence for E2-mediated vasodilation and neuroprotection. E2 potentiates vasodilation by activating endothelial nitric oxide synthase (eNOS), preventing increased inducible NOS (iNOS) activity caused by SAH, and decreasing endothelin-1 production. E2 provides neuroprotection by increasing thioredoxin expression, decreasing c-Jun N-terminal kinase activity, increasing neuroglobin levels, preventing SAH-induced suppression of the Akt signaling pathway, and upregulating the expression of adenosine A2a receptor. The net effect of E2 modulation of these various effectors is the promotion of neuronal survival, inhibition of apoptosis, and decreased oxidative damage and inflammation. E2 is a potentially potent therapeutic tool for improving outcomes related to post-SAH CV and DCI. However, clinical evidence supporting its benefits remains lacking. Given the promising preclinical data available, further studies utilizing E2 for the treatment of patients with ruptured intracranial aneurysms appear warranted.
Collapse
|
39
|
Ostrowski RP, Zhang JH. Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res 2013; 2:316-27. [PMID: 23060945 DOI: 10.1007/s12975-011-0069-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may "precondition" the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA 92350, USA
| | | |
Collapse
|
40
|
Wan H, AlHarbi BM, Macdonald RL. Mechanisms, treatment and prevention of cellular injury and death from delayed events after aneurysmal subarachnoid hemorrhage. Expert Opin Pharmacother 2013; 15:231-43. [PMID: 24283706 DOI: 10.1517/14656566.2014.865724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) patients often develop brain injury as a result of a number of delayed complications, resulting in significant morbidity and mortality. Many of these complications arise due to delayed cerebral ischemia, which occurs secondary to the hemorrhage. AREAS COVERED The mechanisms of the delayed injury are reviewed, including angiographic vasospasm, cortical spreading ischemia, small arteriolar constriction, microthromboemboli, free radical injury and inflammation. Some current and prospective therapies for SAH are discussed, in the context of these complications. Statins have been particularly promising in experimental studies. EXPERT OPINION Multiple mechanisms are involved in the pathogenesis of the delayed insult after SAH. New drugs may need to target multiple pathways to injury. Trials aiming to treat complications after SAH could benefit from taking into account the multifactorial pathogenesis of delayed insults.
Collapse
Affiliation(s)
- Hoyee Wan
- University of Toronto, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Division of Neurosurgery, Department of Surgery , Toronto, Ontario, M5B 1W8 , Canada
| | | | | |
Collapse
|
41
|
Yeung PKK, Shen J, Chung SSM, Chung SK. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci 2013; 14:131. [PMID: 24156724 PMCID: PMC3815232 DOI: 10.1186/1471-2202-14-131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/15/2013] [Indexed: 01/15/2023] Open
Abstract
Background Endothelin-1 (ET-1) is a potent vasoconstrictor, and astrocytic ET-1 is reported to play a role in the pathogenesis of cerebral ischemic injury and cytotoxic edema. However, it is still unknown whether astrocytic ET-1 also contributes to vasogenic edema and vasospasm during subarachnoid hemorrhage (SAH). In the present study, transgenic mice with astrocytic endothelin-1 over-expression (GET-1 mice) were used to investigate the pathophysiological role of ET-1 in SAH pathogenesis. Results The GET-1 mice experienced a higher mortality rate and significantly more severe neurological deficits, blood–brain barrier breakdown and vasogenic edema compared to the non-transgenic (Ntg) mice following SAH. Oral administration of vasopressin V1a receptor antagonist, SR 49059, significantly reduced the cerebral water content in the GET-1 mice. Furthermore, the GET-1 mice showed significantly more pronounced middle cerebral arterial (MCA) constriction after SAH. Immunocytochemical analysis showed that the calcium-activated potassium channels and the phospho-eNOS were significantly downregulated, whereas PKC-α expression was significantly upregulated in the MCA of the GET-1 mice when compared to Ntg mice after SAH. Administration of ABT-627 (ETA receptor antagonist) significantly down-regulated PKC-α expression in the MCA of the GET-1 mice following SAH. Conclusions The present study suggests that astrocytic ET-1 involves in SAH-induced cerebral injury, edema and vasospasm, through ETA receptor and PKC-mediated potassium channel dysfunction. Administration of ABT-627 (ETA receptor antagonist) and SR 49059 (vasopressin V1a receptor antagonist) resulted in amelioration of edema and vasospasm in mice following SAH. These data provide a strong rationale to investigate SR 49059 and ABT-627 as therapeutic drugs for the treatment of SAH patients.
Collapse
Affiliation(s)
| | | | | | - Sookja K Chung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
42
|
Pradilla G, Garzon-Muvdi T, Ruzevick JJ, Bender M, Edwards L, Momin EN, Thompson RC, Tamargo RJ. Systemic L-Citrulline Prevents Cerebral Vasospasm in Haptoglobin 2-2 Transgenic Mice After Subarachnoid Hemorrhage. Neurosurgery 2012; 70:747-56; discussion 756-7. [DOI: 10.1227/neu.0b013e3182363c2f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Abstract
Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons, to some extent in astrocytes and neuronal stem cells. The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS, including nNOS-α, nNOS-β, nNOS-µ, nNOS-γ and nNOS-2. Monomer of nNOS is inactive, and dimer is the active form. Dimerization requires tetrahydrobiopterin (BH4), heme and L-arginine binding. Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity, and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70, calmodulin (CaM), phosphorylation and dephosphorylation at Ser847 and Ser1412, and the protein inhibitor of nNOS (PIN). There are primarily 9 nNOS-interacting proteins, including post-synaptic density protein 95 (PSD95), clathrin assembly lymphoid leukemia (CALM), calcium/calmodulin-dependent protein kinase II alpha (CAMKIIA), Disks large homolog 4 (DLG4), DLG2, 6-phosphofructokinase, muscle type (PFK-M), carboxy-terminal PDZ ligand of nNOS (CAPON) protein, syntrophin and dynein light chain (LC). Among them, PSD95, CAPON and PFK-M are important nNOS adapter proteins in neurons. The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death. nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states, and negatively regulates neurogenesis under physiological and pathological conditions.
Collapse
|
44
|
Nitric oxide in early brain injury after subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:99-103. [PMID: 21116923 DOI: 10.1007/978-3-7091-0353-1_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Nitric Oxide (NO) is the major regulator of cerebral blood flow. In addition, it inhibits platelet adherence and aggregation, reduces adherence of leukocytes to the endothelium, and suppresses vessel injury. NO is produced on demand by nitric oxide synthase and has a very short half life. Hence maintenance of its cerebral level is crucial for normal vascular physiology. Time dependent alterations in cerebral NO level and the enzymes responsible for its synthesis are found after subarachnoid hemorrhage (SAH). Cerebral NO level decreases, recovers and increases within the first 24 h after SAH. Each change in cerebral NO level elicits a different pathological response form already compromised brain. These response range from constriction, platelet aggregation and vascular injury that occurs during the early hours and delayed occurring vasospasm, neuronal and axonal damage. This review summarizes the underlying mechanism and the consequence of alteration in cerebral NO level on brain during the first 72 h after SAH.
Collapse
|
45
|
Ulusal I, Tari R, Ozturk G, Aycicek E, Aktar F, Kotil K, Bilge T, Kiriş T. Dose-dependent ultrastructural and morphometric alterations after erythropoietin treatment in rat femoral artery vasospasm model. Acta Neurochir (Wien) 2010; 152:2161-6. [PMID: 20803041 DOI: 10.1007/s00701-010-0775-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 08/12/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE Cerebral vasospasm is the common cause of poor outcome after aneurysmal subarachnoid hemorrhage (aSAH). Although many agents are experimentally and clinicaly used to protect or recover from vasospasm, an effective neurotherapeutic drug is still missing. Erythropoietin (EPO) is recently a promising candidate. The aim of this study is to investigate the dose-dependent effects of recombinant human EPO (rhEPO) on arterial wall in a rat femoral artery vasospasm model. METHODS Thirty two animals were divided into four groups: vasospasm without any treatment (group A), vasospasm +250 IU/kg rhEPO group (group B), vasospasm +500 IU/kg rhEPO group (group C), and control group (group D). Rat femoral artery vasospasm model was used. For groups B and C, 7 days of 250 IU/kg and 500 IU/kg intraperitoneal rhEPO in 0.3 ml saline were administered respectively; and for groups A and D, 0.3 ml saline were administered intraperitoneally without any treatment. After 7 days, histological and morphometric analyses were carried out. RESULTS Vasospasm alone group demonstrated the highest vessel wall thicknesses, comparing to other groups (p < 0.001). While for groups B and C, vessel wall thickness values were significantly higher than the control group (p < 0.001), between these two groups, there was no significant difference achieved (p > 0.05). CONCLUSION In our study, there was no significant difference between the two rhEPO treatment groups, but rhEPO treatment was shown to be histologically and morphometrically effective in vasospasm. However, if dosage of EPO treatment is augmented, successful results may be achieved.
Collapse
Affiliation(s)
- Ismail Ulusal
- Department of Neurosurgery, Haseki Training and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Aminoguanidine inhibition of iNOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in rabbits via restoration of dysfunctional endothelial cells. J Neurol Sci 2010; 295:97-103. [PMID: 20537662 DOI: 10.1016/j.jns.2010.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/11/2010] [Accepted: 04/20/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND This study was to delineate the therapeutic efficacy and potential cellular and molecular mechanisms of aminoguanidine (AG), a relatively selective inhibitor of iNOS activity, in cerebral vasospasm after subarachnoid hemorrhage (SAH) in rabbits. METHODS SAH was induced by a single injection of autologous arterial blood into the cisterna magna of adult male rabbits. An intravenous bolus injection of AG (150 mg/kg) was administrated 1h after SAH, and this dosage was repeated on the following day. Vasospasm was verified by computed tomography angiography (CTA) day 2 after SAH. Rabbit basilar arteries were harvested for transmission electron microscopy (TEM), immunohistochemical examination, RT-PCR, and western blot analysis. RESULTS CTA data revealed that cerebral vasospasm of SAH rabbits was significantly prevented via AG treatment. TEM results demonstrated the ultrastructural morphological changes of endothelial cells of SAH rabbits were ameliorated by AG treatment. In parallel, AG treatment increased eNOS mRNA and protein levels along with the reduced immunoreactivity of nitrotyrosine in rabbit basilar arteries. CONCLUSIONS Our discovery suggested AG inhibition of iNOS activity could significantly reverse cerebral vasospasm after SAH via restoration of dysfunctional endothelial cells by the upregulation of eNOS, indicating a regulatory cross-talk between eNOS and iNOS in the pathogenesis of SAH.
Collapse
|
47
|
Freilinger T, Schmidt C, Duering M, Linn J, Straube A, Peters N. Reversible cerebral vasoconstriction syndrome associated with hormone therapy for intrauterine insemination. Cephalalgia 2010; 30:1127-32. [DOI: 10.1177/0333102409360675] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Reversible cerebral vasoconstriction syndrome (RCVS) comprises a heterogeneous group of acute neurological diseases which are characterized by thunderclap headache and evidence of reversible multifocal constriction of cerebral arteries. A number of precipitating factors have been described in the literature, including recent childbirth and use of vasoactive substances. Case description: Here we present the case of a female patient with RCVS which occurred in the setting of hormonal ovarian stimulation for intrauterine insemination. Discussion: This case possibly contributes to the understanding of the pathophysiological mechanisms underlying reversible cerebral vasoconstriction.
Collapse
Affiliation(s)
- T Freilinger
- Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - C Schmidt
- Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - M Duering
- Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - J Linn
- Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - A Straube
- Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - N Peters
- Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
48
|
Ersahin M, Toklu HZ, Cetinel S, Yüksel M, Yeğen BC, Sener G. Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res 2009; 46:324-32. [PMID: 19215574 DOI: 10.1111/j.1600-079x.2009.00664.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative stress has detrimental effects in several models of neurodegenerative diseases, including subarachnoid hemorrhage (SAH). This study investigated the putative neuroprotective effect of melatonin, a powerful antioxidant, in a rat model of SAH. Male Wistar albino rats were divided as control, vehicle-treated SAH, and melatonin-treated (10 mg/kg, i.p.) SAH groups. To induce SAH, 0.3 mL blood was injected into cisterna magna of rats. Forty-eight hours after SAH induction, neurological examination scores were measured and the rats were decapitated. Brain tissue samples were taken for blood-brain barrier (BBB) permeability, brain water content, histological examination, or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO), and Na+-K+-ATPase activities. Formation of reactive oxygen species in brain tissue samples was monitored by using a chemiluminescence (CL) technique. The neurological examination scores were increased in SAH groups on the second day of SAH induction and SAH caused a significant decrease in brain GSH content and Na+-K+-ATPase activity, which was accompanied with significant increases in CL, MDA levels, and MPO activity. On the other hand, melatonin treatment reversed all these biochemical indices as well as SAH-induced histopathological alterations, while increased brain water content and impaired BBB were also reversed by melatonin treatment. This study suggests that melatonin, which can easily cross BBB, alleviates SAH-induced oxidative stress and exerts neuroprotection by preserving BBB permeability and by reducing brain edema.
Collapse
Affiliation(s)
- Mehmet Ersahin
- Department of Neurosurgery, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|