1
|
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, Zhu N, Yang J. Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol 2023; 121:110422. [PMID: 37302370 DOI: 10.1016/j.intimp.2023.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. It is characterized by a rapid progression, poor prognosis, and early pulmonary metastasis. Over the past 30 years, approximately 85% of patients with osteosarcoma have experienced metastasis. The five-year survival of patients with lung metastasis during the early stages of treatment is less than 20%. The tumor microenvironment (TME) not only provides conditions for tumor cell growth but also releases a variety of substances that can promote the metastasis of tumor cells to other tissues and organs. Currently, there is limited research on the role of the TME in osteosarcoma metastasis. Therefore, to explore methods for regulating osteosarcoma metastasis, further investigations must be conducted from the perspective of the TME. This will help to identify new potential biomarkers for predicting osteosarcoma metastasis and assist in the discovery of new drugs that target regulatory mechanisms for clinical diagnosis and treatment. This paper reviews the research progress on the mechanism of osteosarcoma metastasis based on TME theory, which will provide guidance for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Xinyi Zhong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingying Su
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Mingchuan Lu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yifen Ma
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Zihe Li
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China
| | - Ningxia Zhu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun 2022; 33:100647. [PMID: 36327576 DOI: 10.1016/j.ctarc.2022.100647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.
Collapse
|
3
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Cheng JP, Huang B, Duan JH, Yi KJ, Zhuang ZL. miR-4295 promotes cell proliferation, migration and invasion of osteosarcoma through targeting interferon regulatory factor 1. Oncol Lett 2020; 20:260. [PMID: 32989394 PMCID: PMC7517570 DOI: 10.3892/ol.2020.12123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/23/2020] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone tumor. Despite encouraging progress in the treatment of OS, the survival rate for patients with OS has remained unchanged over the past 40 years. It has been established that miRNA plays a crucial regulatory role in the progression and development of OS. To explore the potential association of miRNAs with OS, bioinformatics techniques were used to screen for differentially expressed miRNA genes in OS in the Gene Expression Omnibus database. In the GSE70367 database, it was revealed that miR-4295 expression was abnormally elevated in the expression of OS cells. To characterize the potential function of miR-4295 in OS, the expression levels of miR-4295 in 30 samples of OS and adjacent normal tissues was examined. The results revealed that the expression of miR-4295 was significantly increased in OS tissues compared with the paired normal tissues. Moreover, the expression levels of miR-4295 in OS cell lines (MG-63 and Saos-2) were significantly higher compared with those in the normal human mesenchymal stem cells. In addition, miR-4295 was associated with OS cell proliferation, migration and invasion. Furthermore, it was demonstrated that the expression of interferon regulatory factor (IRF)1, a tumor suppressor, was regulated by miR-4295 directly in OS cells. Taken together, the present results revealed that miR-4295 may act as a tumor activator by targeting IRF1 during the progression of OS. Investigating miR-4295 may provide novel insight into the mechanisms of OS metastasis, and inhibition and targeting miR-4295 may be a novel therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jin Pei Cheng
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Bin Huang
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Jun Hu Duan
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Kai Jun Yi
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Zheng Ling Zhuang
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
6
|
Wang X, Peng L, Gong X, Zhang X, Sun R. LncRNA HIF1A-AS2 promotes osteosarcoma progression by acting as a sponge of miR-129-5p. Aging (Albany NY) 2019; 11:11803-11813. [PMID: 31866584 PMCID: PMC6949059 DOI: 10.18632/aging.102448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 01/17/2023]
Abstract
Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play vital roles in tumor development and progression. However, the relationship between osteosarcoma and HIF1AAS2 remains unknown. The expression of HIF1AAS2 and miR-129-5p was detected in osteosarcoma cell lines and samples via qRT-PCR. Cell Counting Kit-8 (CCK-8) and invasion assays were performed to determine cell proliferation and invasion ability, and a dual luciferase reporter assay was performed to determine the interaction between HIF1AAS2 and miR-129-5p. We showed that the expression of HIF1A-AS2 was upregulated in the osteosarcoma samples compared with the expression in noncancerous samples. Moreover, patients with high HIF1A-AS2 expression had a shorter overall survival. Ectopic expression of HIF1A-AS2 enhanced osteosarcoma cell proliferation, cell cycle progression and invasion. We found that overexpression of miR-129-5p decreased the luciferase activity of wild-type (WT) HIF1A-AS2 but not mutant HIF1A-AS2. Ectopic expression of HIF1A-AS2 suppressed miR-129-5p expression in MG-63 cells. We demonstrated that miR-129-5p was downregulated in osteosarcoma and was negatively associated with HIF1A-AS2 expression. Furthermore, ectopic expression of miR-129-5p suppressed osteosarcoma cell proliferation, cell cycle progression and invasion. In addition, overexpression of HIF1A-AS2 promoted cell proliferation, cell cycle progression and invasion of osteosarcoma cells through the modulation of miR-129-5p. These results indicated that HIF1A-AS2 might be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Xuesong Wang
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Lei Peng
- Library of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Xiaojin Gong
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Xiugong Zhang
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Ruifu Sun
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| |
Collapse
|
7
|
Abstract
Although the investigation into biomarkers specific for pulmonary metastasis within osteosarcoma (OS) has recently expanded, their usage within the clinic remains sparse. The current screening protocol after any OS diagnosis includes a chest CT scan; however, metastatic lung nodules frequently go undetected and remain the primary cause of death in OS. Recently, screening technologies such as liquid biopsy and next-generation sequencing have revealed a promising array of biomarkers with predictive and diagnostic value for the pulmonary metastasis associated with OS. These biomarkers draw from genomics, transcriptomics, epigenetics, and metabolomics. When assessed in concert, their utility is most promising as OS is a highly heterogeneous cancer. Accordingly, there has been an expansion of clinical trials not only aimed at further demonstrating the significance of these individual biomarkers but to also reveal which therapies resolve the pulmonary metastasis once detected. This review will focus on the recently discovered and novel metastatic biomarkers within OS, their molecular and cellular mechanisms, the expansion of humanized OS mouse models amenable to their testing, and the associated clinical trials aimed at managing the metastatic phase of OS.
Collapse
|
8
|
MMP-1 Over-expression Promotes Malignancy and Stem-Like Properties of Human Osteosarcoma MG-63 Cells In Vitro. Curr Med Sci 2018; 38:809-817. [PMID: 30594980 DOI: 10.1007/s11596-018-1947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/10/2018] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in childhood, and it maintains a high level of recurrence. Matrix metalloproteinase-1 (MMP-1) was found to contribute to cancer progression. The present study was to investigate the in vitro effects of MMP-1 over-expression on the proliferation, invasion, metastasis and stem-like properties of osteosarcoma MG-63 cells. The MG-63 cells were cultured and had a full length MMP-1 cDNA inserted by the lentiviral vector (MG-63MMP-1+). MG-63 negative control and MG-63 blank control groups were established as well. MMP-1 expression was detected in MG-63MMP-1+, MG-63 negative control and MG-63 blank control cells using qPCR, Western blotting and immunofluorescence after 24 h of culture. The cell proliferation assay was performed with a camera attached to a bioreactor, which was programmed to photograph five regions of each well every 10 min over a period of 48 h. The cell invasion assay was conducted with Matrigel to assess the invasive potential of MG-63 cells over 24 h, the qPCR analysis to measure stem cell markers, including Oct4, Sox-2, Nanog, and Pax-7, and Western blot analysis to detect invasive and metastatic potential markers TIMP-1, VEGF and BMP2/4, after 24 h of culture. Immunofluorescence was used to investigate the presence of the stem cell marker Pax-7 after 24-h culture. The results showed that over-expression of MMP-1 after transfection could significantly increase tumor cell proliferation and invasion (P<0.05, MG-63MMP-1+versus controls). Pax-7 was highly expressed in MG-63MMP-1+ cells, with no significant changes of Oct-4, Sox-2, and Nanog observed (P<0.05). MG-63MMP-1+ cells showed higher expression of VEGF and BMP 2/4 proteins and lower expression of TIMP-1 protein than controls (P<0.05). It was concluded that MMP-1 over-expression in MG-63 cells contributed to the proliferation, invasion, metastasis and stem-like properties of osteosarcoma cells. Future studies should focus on in vivo effects of MMP-1 over-expression and the application of MMP-1 and Pax-7 inhibition in vivo to osteosarcoma therapies.
Collapse
|
9
|
Expression patterns of class I histone deacetylases in osteosarcoma: a novel prognostic marker with potential therapeutic implications. Mod Pathol 2018; 31:264-274. [PMID: 28984297 PMCID: PMC5811636 DOI: 10.1038/modpathol.2017.125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022]
Abstract
Epigenetic aberrations are recognized as having pivotal roles in cancer etiology and progression. Histone deacetylases are among the most studied epigenetic modulators in various cancer types. The expression levels of class I histone deacetylase isoforms 1, 2, and 3 in patient-derived primary osteosarcoma cells (6 cases) was investigated, comparing them to normal bone graft-derived osteoblasts (6 cases) using the immunoblotting technique. Expression profiles of histone deacetylases in high-grade osteosarcoma tissue of 89 patients were examined and their association with clinicopathologic parameters and the patient survival was evaluated. Histone deacetylases were immunohistochemically stained on formalin-fixed paraffin-embedded biopsied tissue. Primary osteosarcoma cells expressed higher levels of histone deacetylase 1 and histone deacetylase 2, but lower levels of histone deacetylase 3 compared to benign osteoblasts. Overall, 82, 99, and 93% of 89 osteosarcomas showed nuclear expression of the histone deacetylase isoforms 1, 2, and 3, respectively. Low levels of histone deacetylase 1 were significantly associated with a high Enneking stage (P=0.014) and the presence of initial metastasis (P=0.040), while low levels of histone deacetylase 3 were significantly correlated with age >15 years (P=0.026). Univariate survival analysis found significantly shorter survival in the patients with a high Enneking stage (P<0.001), axial location (P=0.009), presence of initial metastasis (P<0.001), low-histone deacetylase 1 expression (P=0.038), and low-all-histone deacetylases expression (P=0.016). Multivariate survival analysis showed that only axial location (P=0.011) and low-all-histone deacetylases expression (P=0.039) were independent prognostic factors. In subgroup analysis of stage IIB patients (n=45), only axial location and low-all-histone deacetylases expression were associated with shorter survival in both univariate and multivariate analysis (axial location, P=0.008 and 0.010; low-all-HDACs, P=0.013 and 0.038, respectively). Low levels of all-histone deacetylases expression were significantly associated with advanced disease status and short survival. These findings may be a guide to future use of histone deacetylase inhibitors in osteosarcoma patients.
Collapse
|
10
|
Meng Q, Dai M, Nie X, Zhang W, Xu X, Li J, Mu H, Liu X, Qin L, Zhu X, Yan J, Zheng M. MicroRNA-19 contributes to the malignant phenotypes of osteosarcoma in vitro by targeting Pax6. Tumour Biol 2018; 40:1010428317744704. [PMID: 29345189 DOI: 10.1177/1010428317744704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study was conducted to detect the expression of miR-19 and Pax6 (Paired box protein 6) in human osteosarcoma cells and the effects on biological characteristics of osteosarcoma cells. Quantitative real-time polymerase chain reaction was used to detect the expression of Pax6 and miR-19 in normal human osteoblasts (hFOB 1.19) and osteosarcoma cell lines (U2OS, Saos-2, and MG-63). Results showed that miR-19 was significantly upregulated in osteosarcoma cell lines compared with that in hFOB 1.19 cells, while the expression of Pax6 messenger RNA was significantly downregulated. Pax6 was defined as the target gene of miR-19 which was validated by luciferase reporter gene analysis. Results indicated that miR-19 had an interaction with Pax6 3'-untranslated region. At the same time, the protein expression of Pax6 was significantly decreased in the MG-63 cells transfected with miR-19 mimic and was notably enhanced in osteosarcoma MG-63 cells transfected with miR-19 inhibitor. These data suggested that Pax6 was a target of miR-19 in osteosarcoma MG-63 cells. The effects of miR-19 on the biological behavior of MG-63 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay. Results showed that the downregulation of miR-19 inhibited cell viability, reduced the percentage of cells in S phase and the number of cells passing through the Transwell chamber, and increased the number of apoptotic cells. Western blot analysis showed that the inhibition of miR-19 significantly increased the expression of epithelial proteins (E-cadherin and β-catenin) and decreased the expression of mesenchymal protein (Vimentin), extracellular signal-regulated kinase, and phosphorylated extracellular signal-regulated kinase in MG-63 cells. MiR-19 inhibitor and Pax6 small interfering RNA were simultaneously transfected into MG-63 cells. Results from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay demonstrated that the inhibition of Pax6 expression in MG-63 cells could reverse the cell biological effects induced by the inhibition of miR-19 expression. Based on these findings, it was suggested that miR-19, upregulated in osteosarcoma cells, negatively regulated the expression of Pax6, which can promote the malignant phenotypes of osteosarcoma cells via activation of the extracellular signal-regulated kinase signaling pathways. Therefore, miR-19/Pax6 may offer potential for use as a target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Qingbing Meng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ming Dai
- 2 Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, P.R. China
| | - Xuejun Nie
- 3 Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wensheng Zhang
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xingli Xu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jian Li
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Hongxin Mu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaolan Liu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ling Qin
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaoqi Zhu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jun Yan
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Minqian Zheng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| |
Collapse
|
11
|
Zhang X, Li Y, Qi P, Ma Z. Biology of MiR-17-92 Cluster and Its Progress in Lung Cancer. Int J Med Sci 2018; 15:1443-1448. [PMID: 30443163 PMCID: PMC6216058 DOI: 10.7150/ijms.27341] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs, a class of short endogenous RNAs, acting as post-transcriptional regulators of gene expression, mostly silence gene expression via binding imperfectly matched sequences in the 3'UTR of target mRNA. MiR-17-92, a highly conserved gene cluster, has 6 members including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a. The miR-17-92 cluster, regarded as oncogene, is overexpressed in human cancers. Lung cancer is the leading cause of death all over the world. The molecular mechanism of lung cancer has been partly known at the levels of genes and proteins in last decade. However, new prognosis biomarkers and more target drugs should be developed in future. Therefore, noncoding RNAs, especially miRNAs, make them as new potentially clinical biomarkers for diagnosis and prognosis. In this review, we focus the current progress of miR-17-92 cluster in lung cancer.
Collapse
Affiliation(s)
- Xinju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Pengfei Qi
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences Shanghai University, Shanghai 200444
| |
Collapse
|
12
|
Elwakkad A, Ghoneum M, El-Sawi M, Mohamed SI, Gamal El Din AA, Pan D, Elqattan GM. Baker's Yeast Induces Apoptotic Effects and Histopathological Changes on Skin Tumors in Mice. COGENT MEDICINE 2018; 5. [PMID: 31098389 PMCID: PMC6516756 DOI: 10.1080/2331205x.2018.1437673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The current study investigates the apoptotic effect of Baker’s yeast (S. cerevisiae) on chemically-induced skin cancer in mice. Intra-tumoral treatment with yeast caused: increases in Ca2+ in skin homogenate, modulated the intrinsic/extrinsic pathways by downregulating Bcl-2 and FasL, upregulating Bax, and increased the expression of cytochrome-c and caspases 9, 8, and 3. Histopathological changes were detected, including mild dysplasia, atypia, tumor regression, and absence of basaloid cell proliferation. No toxic effects were detected, as examined by histopathological, biochemical, and body weight analysis. These results show that yeast exerts anti-skin cancer activity, suggesting its possible use for treatment of human skin cancer.
Collapse
Affiliation(s)
- Amany Elwakkad
- Department of Medical Physiology, National Research Centre, Cairo, Egypt, Charles Drew University of Medicine and Science, Los Angeles, California, USA
| | - Mamdooh Ghoneum
- Department of Surgery, Charles Drew University of Medicine and Science, Los Angeles, California, USA
| | | | - Saadia Ibrahim Mohamed
- Department of Medical Physiology, National Research Centre, Cairo, Egypt, Charles Drew University of Medicine and Science, Los Angeles, California, USA
| | | | - Deyu Pan
- Department of social and preventive medicine, Charles Drew University of Medicine and Science, Los Angeles, California, USA
| | - Ghada Mahmoud Elqattan
- Department of Medical Physiology, National Research Centre, Cairo, Egypt, Charles Drew University of Medicine and Science, Los Angeles, California, USA
| |
Collapse
|
13
|
Martin-Broto J, Redondo A, Valverde C, Vaz M, Mora J, Garcia del Muro X, Gutierrez A, Tous C, Carnero A, Marcilla D, Carranza A, Sancho P, Martinez-Trufero J, Diaz-Beveridge R, Cruz J, Encinas V, Taron M, Moura D, Luna P, Hindi N, Lopez-Pousa A. Gemcitabine plus sirolimus for relapsed and progressing osteosarcoma patients after standard chemotherapy: a multicenter, single-arm phase II trial of Spanish Group for Research on Sarcoma (GEIS). Ann Oncol 2017; 28:2994-2999. [DOI: 10.1093/annonc/mdx536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
14
|
Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol 2017; 13:480-491. [PMID: 28338660 DOI: 10.1038/nrendo.2017.16] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical outcomes and treatment modalities for osteosarcoma, the most common primary cancer of bone, have changed very little over the past 30 years. The peak incidence of osteosarcoma occurs during the adolescent growth spurt, which suggests that bone growth and pubertal hormones are important in the aetiology of the disease. Tall stature, high birth weight and certain inherited cancer predisposition syndromes are well-described risk factors for osteosarcoma. Common genetic variants are also associated with osteosarcoma. The somatic genome of osteosarcoma is highly aneuploid, exhibits extensive intratumoural heterogeneity and has a higher mutation rate than most other paediatric cancers. Complex pathways related to bone growth and development and tumorigenesis are also important in osteosarcoma biology. In this Review, we discuss the contributions of germline and somatic genetics, tumour biology and animal models in improving our understanding of osteosarcoma aetiology, and their potential to identify novel therapeutic targets and thus improve the lives of patients with osteosarcoma.
Collapse
Affiliation(s)
- D Matthew Gianferante
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Re-calculating! Navigating through the osteosarcoma treatment roadblock. Pharmacol Res 2016; 117:54-64. [PMID: 27940205 DOI: 10.1016/j.phrs.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
Abstract
The survival rates for patients with osteosarcoma have remained almost static for the past three decades. Current standard of care therapy includes chemotherapies such as doxorubicin, cisplatin, and methotrexate along with complete surgical resection and surgery with or without ifosfamide and etoposide for relapse, though outcomes are hoped to be improved through clinical trials. Additionally, increased understanding of the genetics, signaling pathways and microenvironmental factors driving the disease have led to the identification of promising agents and potential paths towards translation of an exciting array of novel targeted therapies. Here, we review the mechanism of action of these emerging therapies and how, with clinical translation, they can potentially improve the survival rates for osteosarcoma patients in the near future.
Collapse
|
16
|
MA LIJIE, LI PEIPEI, WANG RUIXUAN, NAN YANDONG, LIU XUEYING, JIN FAGUANG. Analysis of novel microRNA targets in drug-sensitive and -insensitive small cell lung cancer cell lines. Oncol Rep 2015; 35:1611-21. [DOI: 10.3892/or.2015.4487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
|
17
|
Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, Menendez P, Garcia-Castro J, Rodriguez R. Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci 2015; 72:3097-113. [PMID: 25935149 PMCID: PMC11113487 DOI: 10.1007/s00018-015-1918-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023]
Abstract
The bone is a complex connective tissue composed of many different cell types such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem/progenitor cells, hematopoietic cells and endothelial cells, among others. The interaction between them is finely balanced through the processes of bone formation and bone remodeling, which regulates the production and biological activity of many soluble factors and extracellular matrix components needed to maintain the bone homeostasis in terms of cell proliferation, differentiation and apoptosis. Osteosarcoma (OS) emerges in this complex environment as a result of poorly defined oncogenic events arising in osteogenic lineage precursors. Increasing evidence supports that similar to normal development, the bone microenvironment (BME) underlies OS initiation and progression. Here, we recapitulate the physiological processes that regulate bone homeostasis and review the current knowledge about how OS cells and BME communicate and interact, describing how these interactions affect OS cell growth, metastasis, cancer stem cell fate and therapy outcome.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Juan Tornin
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Ander Abarrategi
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Teresa Amaral
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Seville, Spain
| | - Enrique de Alava
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Seville, Spain
| | - Pablo Menendez
- Cell Therapy Program, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Javier Garcia-Castro
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| |
Collapse
|
18
|
Hagleitner MM, Coenen MJH, Gelderblom H, Makkinje RR, Vos HI, de Bont ESJM, van der Graaf WTA, Schreuder HWB, Flucke U, van Leeuwen FN, Hoogerbrugge PM, Guchelaar HJ, te Loo DMWM. A First Step toward Personalized Medicine in Osteosarcoma: Pharmacogenetics as Predictive Marker of Outcome after Chemotherapy-Based Treatment. Clin Cancer Res 2015; 21:3436-41. [PMID: 25829401 DOI: 10.1158/1078-0432.ccr-14-2638] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/17/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Overall survival in patients with osteosarcoma is only 60%. Poor response to chemotherapy is the dominant risk factor for poor survival. Pharmacogenetic research can offer possibilities to optimize treatment and improve outcome. We applied a pathway-based approach to evaluate the cumulative effect of genes involved in the metabolism of cisplatin and doxorubicin in relationship to clinical outcome. EXPERIMENTAL DESIGN We included 126 patients with osteosarcoma. To comprehensively assess common genetic variation in the 54 genes selected, linkage disequilibrium (LD; r(2) = 0.8)-based tag-single nucleotide polymorphisms (SNP) strategy was used. A final set of 384 SNPs was typed using Illumina Beadarray platform. SNPs significantly associated with 5-year progression-free survival (PFS) were replicated in another 64 patients with osteosarcoma. RESULTS We identified five variants in FasL, MSH2, ABCC5, CASP3, and CYP3A4 that were associated with 5-year PFS. Risk stratification based on the combined effects of the risk alleles showed a significant improvement of 5-year PFS. Patients that carried no or only one risk allele had a 5-year PFS of 100% compared with a 5-year PFS of 84.4% for carriers of two or three risk alleles, 66.7% PFS if a patient carried four to five alleles, and a 5-year PFS of 41.8% for patients with >5 risk alleles (P < 0.001). CONCLUSIONS We identified several genes that showed association with PFS in patients with osteosarcoma. These pharmacogenetic risk factors might be useful to predict treatment outcome and to stratify patients immediately after diagnosis and offer the possibility to improve treatment and outcome.
Collapse
Affiliation(s)
- Melanie M Hagleitner
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Gelderblom
- Department of Clinical Oncology, Leiden University Medical Center, the Netherlands
| | - Remco R Makkinje
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanneke I Vos
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eveline S J M de Bont
- Department of Pediatric Hematology and Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - H W Bart Schreuder
- Department of Orthopedic Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank N van Leeuwen
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, the Netherlands
| | - Dunja M W M te Loo
- Department of Pediatric Hematology and Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|