1
|
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults despite contemporary gold-standard first-line treatment strategies. This type of tumor recurs in virtually all patients and no commonly accepted standard treatment exists for the recurrent disease. Therefore, advances in all scientific and clinical aspects of GBM are urgently needed. Epigenetic mechanisms are one of the major factors contributing to the pathogenesis of cancers, including glioblastoma. Epigenetic modulators that regulate gene expression by altering the epigenome and non-histone proteins are being exploited as therapeutic drug targets. Over the last decade, numerous preclinical and clinical studies on histone deacetylase (HDAC) inhibitors have shown promising results in various cancers. This article provides an overview of the anticancer mechanisms of HDAC inhibitors and the role of HDAC isoforms in GBM. We also summarize current knowledge on HDAC inhibitors on the basis of preclinical studies and emerging clinical data.
Collapse
|
2
|
Hicks MJ, Chiuchiolo MJ, Ballon D, Dyke JP, Aronowitz E, Funato K, Tabar V, Havlicek D, Fan F, Sondhi D, Kaminsky SM, Crystal RG. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma. PLoS One 2016; 11:e0162978. [PMID: 27711187 PMCID: PMC5053413 DOI: 10.1371/journal.pone.0162978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM.
Collapse
Affiliation(s)
- Martin J Hicks
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric Aronowitz
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Kosuke Funato
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Institute, New York, NY, United States of America
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Institute, New York, NY, United States of America
| | - David Havlicek
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Fan Fan
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
3
|
Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Marchenko YY, Parr MA, Rolich VI, Mikhrina AL, Dobrodumov AV, Pitkin E, Multhoff G. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1). NANOSCALE 2015; 7:20652-20664. [PMID: 26599206 DOI: 10.1039/c5nr06521f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T(2)-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of T*(2) values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M(2) measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg, 194064, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|