1
|
Akter J, Lee JHZ, Whelan F, De Voss JJ, Bell SG. Characterisation of the Cytochrome P450 Monooxygenase CYP116B46 from Tepidiphilus thermophilus as a Homogentisic Acid Generating Enzyme and its Conversion to a Peroxygenase. Chembiochem 2025; 26:e202400880. [PMID: 39714419 DOI: 10.1002/cbic.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyse the selective hydroxylation of unactivated C-H bonds in organic molecules. There is great interest in applying these enzymes as biocatalysts with a focus on self-sufficient CYP 'fusion' enzymes, comprising a single polypeptide chain with the electron transfer components joined to the heme domain. Here we elucidate the function of the self-sufficient CYP116B46 fusion enzyme, from the thermophilic bacterium Tepidiphilus thermophilus. We demonstrate that it efficiently hydroxylates aromatic organic acids, exemplified by oxidation of 2-hydroxyphenylacetic acid to homogentisic acid (2,5-dihydroxyphenylacetic acid), an important metabolite in bacterial catabolism. In line with the thermophilic nature of the source bacterium, activity increased at higher temperatures, (50 °C), with a catalytic preference for NADPH over NADH. While self-sufficient fusion enzymes simplify biocatalysis; engineered peroxygenase activity is also a key advance in the application of these enzymes as biocatalysts as it eliminates the need for electron transfer partner proteins and nicotinamide cofactors. We demonstrate that a T278E mutation in the heme domain of CYP116B46, confers peroxygenase activity. This engineered peroxygenase enzyme is stable to elevated temperatures and catalytic concentrations of hydrogen peroxide, with an observed optimal activity resulting in a total turnover number of ~650.
Collapse
Affiliation(s)
- Jina Akter
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Germann SM, Holtz M, Jensen MK, Acevedo-Rocha CG. Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products. Nat Prod Rep 2024; 41:1846-1857. [PMID: 39552440 DOI: 10.1039/d4np00027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: 2016 to the end of 2024This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.
Collapse
Affiliation(s)
| | - Maxence Holtz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
4
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
5
|
Esteves F, Almeida CMM, Silva S, Saldanha I, Urban P, Rueff J, Pompon D, Truan G, Kranendonk M. Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism. Biomolecules 2023; 13:1083. [PMID: 37509119 PMCID: PMC10377444 DOI: 10.3390/biom13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
Collapse
Affiliation(s)
- Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Inês Saldanha
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Denis Pompon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
6
|
Paço L, Hackett JC, Atkins WM. Nanodisc-embedded cytochrome P450 P3A4 binds diverse ligands by distributing conformational dynamics to its flexible elements. J Inorg Biochem 2023; 244:112211. [PMID: 37080138 PMCID: PMC10175226 DOI: 10.1016/j.jinorgbio.2023.112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) metabolizes a wide range of drugs and toxins. Interactions of CYP3A4 with ligands are difficult to predict due to promiscuity and conformational flexibility. To better understand CYP3A4 conformational responses to ligands we use hydrogen deuterium exchange mass spectrometry (HDX-MS) to investigate the effect of ligands on nanodisc-embedded CYP3A4. For a subset of CYP3A4-ligand complexes, differences in the low-frequency modes derived by principal component analyses of molecular dynamics trajectories mirrored the HDX-MS results. The effects of ligands are distributed to flexible elements of CYP3A4 between stretches of secondary structure. The largest effects occur in the F- and G-helices, where most ligands increase the flexibility of the F-helix and connecting loops and decrease the flexibility of the C-term of the G-helix. Most ligands affect the E-F-G, CD and HI regions of the protein. Ligand-dependent differences are observed in the A"-A' loop, BC region, E-helix, K-β1 region, proximal loop, and C-term loop. Correlated HDX responses were observed in the CD region and the C-term of the G-helix that were most pronounced for Type II ligands. Collectively, the HDX and molecular dynamics results suggest that CYP3A4 accommodates diverse binding partners by propagating local backbone fluctuations from the binding site onto the flexible regions of the enzyme via long-range interactions that are differentially modulated by ligands. In contrast to the paradigm wherein ligands decrease protein dynamics at their binding site, a wide range of ligands modestly increase CYP3A4 dynamics throughout the protein including effects remote from the active site.
Collapse
Affiliation(s)
- Lorela Paço
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America
| | - John C Hackett
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America.
| |
Collapse
|
7
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
8
|
Hargrove TY, Lamb DC, Smith JA, Wawrzak Z, Kelly SL, Lepesheva GI. Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics. Sci Rep 2022; 12:16232. [PMID: 36171457 PMCID: PMC9519919 DOI: 10.1038/s41598-022-20671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 01/05/2023] Open
Abstract
The molecular evolution of cytochromes P450 and associated redox-driven oxidative catalysis remains a mystery in biology. It is widely believed that sterol 14α-demethylase (CYP51), an essential enzyme of sterol biosynthesis, is the ancestor of the whole P450 superfamily given its conservation across species in different biological kingdoms. Herein we have utilized X-ray crystallography, molecular dynamics simulations, phylogenetics and electron transfer measurements to interrogate the nature of P450-redox partner binding using the naturally occurring fusion protein, CYP51-ferredoxin found in the sterol-producing bacterium Methylococcus capsulatus. Our data advocates that the electron transfer mechanics in the M. capsulatus CYP51-ferredoxin fusion protein involves an ensemble of ferredoxin molecules in various orientations and the interactions are transient. Close proximity of ferredoxin, however, is required to complete the substrate-induced large-scale structural switch in the P450 domain that enables proton-coupled electron transfer and subsequent oxygen scission and catalysis. These results have fundamental implications regarding the early evolution of electron transfer proteins and for the redox reactions in the early steps of sterol biosynthesis. They also shed new light on redox protein mechanics and the subsequent diversification of the P450 electron transfer machinery in nature.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - David C Lamb
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - Jarrod A Smith
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, IL, 60439, USA
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Singh H, Kumar R, Mazumder A, Salahuddin, Mazumder R, Abdullah MM. Insights into Interactions of Human Cytochrome P450 17A1: Review. Curr Drug Metab 2022; 23:172-187. [DOI: 10.2174/1389200223666220401093833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/15/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cytochrome P450s are a widespread and vast superfamily of hemeprotein monooxygenases that metabolize physiologically essential chemicals necessary for most species' survival, from protists to plants to humans. They catalyze the synthesis of steroid hormones, cholesterol, bile acids, and arachidonate metabolites and the degradation of endogenous compounds such as steroids, fatty acids, and other catabolizing compounds as an energy source and detoxifying xenobiotics such as drugs, procarcinogens, and carcinogens. The human CYP17A1 is one of the cytochrome P450 genes located at the 10q chromosome. The gene expression occurs in the adrenals and gonads, with minor amounts in the brain, placenta, and heart. This P450c17 cytochrome gene is a critical steroidogenesis regulator which performs two distinct activities: 17 alpha-hydroxylase activity (converting pregnenolone to 17-hydroxypregnenolone and progesterone to 17-hydroxyprogesterone, these precursors are further processed to provide glucocorticoids and sex hormones) and 17, 20-lyase activity (which converts 17-hydroxypregnenolone to DHEA). Dozens of mutations within CYP17A1 are found to cause 17-alpha-hydroxylase and 17, 20-lyase deficiency. This condition affects the function of certain hormone-producing glands, resulting in high blood pressure levels (hypertension), abnormal sexual development, and other deficiency diseases. This review highlights the changes in CYP17A1 associated with gene-gene interaction, drug-gene interaction, chemical-gene interaction, and its biochemical reactions; they have some insights to correlate with the fascinating functional characteristics of this human steroidogenic gene. The findings of our theoretical results will be helpful to further the design of specific inhibitors of CYP17A1.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | |
Collapse
|
10
|
Glass SM, Webb SN, Guengerich FP. Binding of cytochrome P450 27C1, a retinoid desaturase, to its accessory protein adrenodoxin. Arch Biochem Biophys 2021; 714:109076. [PMID: 34732331 DOI: 10.1016/j.abb.2021.109076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/11/2023]
Abstract
Of the 57 human cytochrome P450 (P450) enzymes, seven are mitochondrial: 11A1, 11B1, 11B2, 24A1, 27A1, 27B1, and 27C1. Mitochondrial P450s utilize an electron transport system with adrenodoxin (Adx) and NADPH-adrenodoxin reductase (AdR). AdR reduces Adx, which then transfers electrons to the P450. The interactions between proteins in the mitochondrial P450 system are largely driven by electrostatic interactions, though the specifics vary depending on the P450. Unlike other mitochondrial P450s, the interaction between P450 27C1, a retinoid 3,4-desaturase expressed in the skin, and Adx remains largely uncharacterized. In this work, we utilized an Alexa Fluor 488 C5 maleimide-labeled Adx to measure binding affinities between Adx and P450 27C1 or AdR. Both proteins bound Adx tightly, with Kd values < 100 nM, and binding affinities decreased with increasing ionic strength, supporting the role of electrostatic interactions in mediating these interactions. Cross-linking mass spectrometry and computational modeling were performed to identify interactions between P450 27C1 and Adx. While the residues of Adx identified in interactions were consistent with studies of other mitochondrial P450s, the binding interface of P450 27C1 was quite large and supported multiple Adx binding positions, including ones outside of the canonical Adx binding site. Additionally, Adx did not appear to be an allosteric effector of P450 27C1 substrate binding, in contrast to some other mitochondrial P450s. Overall, we conclude that P450-Adx interactions are P450-specific.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
11
|
Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot 2021; 11:94-114. [PMID: 34206277 PMCID: PMC8293344 DOI: 10.3390/jox11030007] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.R.); (M.K.)
| | | | | |
Collapse
|
12
|
Functional Assessment of 12 Rare Allelic CYP2C9 Variants Identified in a Population of 4773 Japanese Individuals. J Pers Med 2021; 11:jpm11020094. [PMID: 33540768 PMCID: PMC7912942 DOI: 10.3390/jpm11020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is an important drug-metabolizing enzyme that contributes to the metabolism of approximately 15% of clinically used drugs, including warfarin, which is known for its narrow therapeutic window. Interindividual differences in CYP2C9 enzymatic activity caused by CYP2C9 genetic polymorphisms lead to inconsistent treatment responses in patients. Thus, in this study, we characterized the functional differences in CYP2C9 wild-type (CYP2C9.1), CYP2C9.2, CYP2C9.3, and 12 rare novel variants identified in 4773 Japanese individuals. These CYP2C9 variants were heterologously expressed in 293FT cells, and the kinetic parameters (Km, kcat, Vmax, catalytic efficiency, and CLint) of (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation were estimated. From this analysis, almost all novel CYP2C9 variants showed significantly reduced or null enzymatic activity compared with that of the CYP2C9 wild-type. A strong correlation was found in catalytic efficiencies between (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation among all studied CYP2C9 variants. The causes of the observed perturbation in enzyme activity were evaluated by three-dimensional structural modeling. Our findings could clarify a part of discrepancies among genotype–phenotype associations based on the novel CYP2C9 rare allelic variants and could, therefore, improve personalized medicine, including the selection of the appropriate warfarin dose.
Collapse
|
13
|
Esteves F, Urban P, Rueff J, Truan G, Kranendonk M. Interaction Modes of Microsomal Cytochrome P450s with Its Reductase and the Role of Substrate Binding. Int J Mol Sci 2020; 21:E6669. [PMID: 32933097 PMCID: PMC7555755 DOI: 10.3390/ijms21186669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is degenerated. Recently, we demonstrated that specific CPR mutations in the FMN-domain (FD) may induce a gain in activity for a specific CYP isoform. In the current report, we confirm the CYP isoform dependence of CPR's degenerated binding by demonstrating that the effect of four of the formerly studied FD mutants are indeed exclusive of a specific CYP isoform, as verified by cytochrome c inhibition studies. Moreover, the nature of CYP's substrate seems to have a modulating role in the CPR:CYP interaction. In silico molecular dynamics simulations of the FD evidence that mutations induces very subtle structural alterations, influencing the characteristics of residues formerly implicated in the CPR:CYP interaction or in positioning of the FMN moiety. CPR seems therefore to be able to form effective interaction complexes with its structural diverse partners via a combination of specific structural features of the FD, which are functional in a CYP isoform dependent manner, and dependent on the substrate bound.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - José Rueff
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| |
Collapse
|
14
|
An overview of the factors playing a role in cytochrome P450 monooxygenase and ferredoxin interactions. Biophys Rev 2020; 12:1217-1222. [PMID: 32885385 DOI: 10.1007/s12551-020-00749-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins that are ubiquitously present in organisms, including non-living entities such as viruses. With the exception of self-sufficient P450s, all other P450 enzymes need electrons to perform their enzymatic activity and these electrons are supplied by P450 redox proteins. Different types of P450 redox proteins can be found in organisms and are classified into different classes. Bacterial P450s (class I) receive electrons from ferredoxins which are iron-sulfur cluster proteins. The presence of more than one copy and different types of ferredoxins within a bacterial species poses fundamental questions about the selectivity of P450s and ferredoxins in relation to each other. Apart from transferring electrons, ferredoxins have also been found to modulate P450 functions. Achieving an understanding of the interaction between ferredoxins and P450s is required to harness their biotechnological potential for designing a universal electron transfer protein. A brief overview of factors playing a role in ferredoxin and P450 interactions is presented in this review article.
Collapse
|
15
|
Zhang C, Catucci G, Di Nardo G, Gilardi G. Effector role of cytochrome P450 reductase for androstenedione binding to human aromatase. Int J Biol Macromol 2020; 164:510-517. [PMID: 32698066 DOI: 10.1016/j.ijbiomac.2020.07.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Cytochromes P450 constitute a large superfamily of monooxygenases involved in many metabolic pathways. Most of them are not self-sufficient and need a reductase protein to provide the electrons necessary for catalysis. It was shown that the redox partner plays a role in the modulation of the structure and function of some bacterial P450 enzymes. Here, the effect of NADPH-cytochrome reductase (CPR) on human aromatase (Aro) is studied for what concerns its role in substrate binding. Pre-steady-state kinetic experiments indicate that both the substrate binding rates and the percentage of spin shift detected for aromatase are increased when CPR is present. Moreover, aromatase binds the substrate through a conformational selection mechanism, suggesting a possible effector role of CPR. The thermodynamic parameters for the formation of the CPR-Aro complex were studied by isothermal titration calorimetry. The dissociation constant of the complex formation is 4.5 folds lower for substrate-free compared to the substrate-bound enzyme. The enthalpy change observed when the CPR-Aro complex forms in the absence of the substrate are higher than in its presence, indicating that more interactions are formed/broken in the former case. Taken together, our data confirm that CPR has a role in promoting aromatase conformation optimal for substrate binding.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| |
Collapse
|
16
|
Ueno M, Kobayashi M, Fujie A, Shibata T. Cloning and heterologous expression of P450Lent4B11, a novel bacterial P450 gene, for hydroxylation of an antifungal agent sordaricin. J Antibiot (Tokyo) 2020; 73:615-621. [PMID: 32358585 DOI: 10.1038/s41429-020-0310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/08/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022]
Abstract
Microbial transformation is known to be one of promising options to add functional groups such as a hydroxyl moiety to active base compounds to generate their derivatives. Sordaricin, a diterpene aglycone of the natural product sordarin, is an antifungal agent to selectively inhibit fungal protein synthesis by stabilizing the ribosome/EF-2 (elongation factor 2) complex. We screened actinomycetes to catalyze hydroxylation of sordaricin on the basis that the hydroxyl moiety would make it easier to generate derivatives of sordaricin. As a result of the screening, 6-hydroxylation of sordaricin was found to be catalyzed by Lentzea sp. 7887. We found that the cytochrome P450 inhibitor metyrapone inhibited this reaction, suggesting that a cytochrome P450 may be responsible for the biotransformation. As a next step, we cloned multiple cytochrome P450 genes, one of which were named P450Lent4B11, using degenerate PCR primers. The expressed cytochrome P450 derived from the P450Lent4B11 gene provided a different absorbance spectrum pattern from original one when it was incubated with sordaricin. Moreover, in cell-free conditions, the corresponding cytochrome P450 displayed the 6-hydroxylation activity toward sordaricin. Taken together, these results indicate that P450Lent4B11, derived from Lentzea sp. 7887, should be responsible for catalyzing 6-hydroxylation of sordaricin.
Collapse
Affiliation(s)
- Motoi Ueno
- Pharmacology Research Laboratories, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan.
| | - Motoo Kobayashi
- Research Planning and Administration, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Akihiko Fujie
- Research Management, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Takashi Shibata
- Pharmaceutical Science and Technology Labs, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan
| |
Collapse
|
17
|
Esteves F, Campelo D, Gomes BC, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. The Role of the FMN-Domain of Human Cytochrome P450 Oxidoreductase in Its Promiscuous Interactions With Structurally Diverse Redox Partners. Front Pharmacol 2020; 11:299. [PMID: 32256365 PMCID: PMC7094780 DOI: 10.3389/fphar.2020.00299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
NADPH cytochrome P450 oxidoreductase (CPR) is the obligatory electron supplier that sustains the activity of microsomal cytochrome P450 (CYP) enzymes. The variant nature of the isoform-specific proximal interface of microsomal CYPs indicates that CPR is capable of multiple degenerated interactions with CYPs for electron transfer, through different binding mechanisms, and which are still not well-understood. Recently, we showed that CPR dynamics allows formation of open conformations that can be sampled by its structurally diverse redox partners in a CYP-isoform dependent manner. To further investigate the role of the CPR FMN-domain in effective binding of CPR to its diverse acceptors and to clarify the underlying molecular mechanisms, five different CPR-FMN-domain random mutant libraries were created. These libraries were screened for mutants with increased activity when combined with specific CYP-isoforms. Seven CPR-FMN-domain mutants were identified, supporting a gain in activity for CYP1A2 (P117H, G144C, A229T), 2A6 (P117L/L125V, G175D, H183Y), or 3A4 (N151D). Effects were evaluated using extended enzyme kinetic analysis, cytochrome b 5 competition, ionic strength effect on CYP activity, and structural analysis. Mutated residues were located either in or adjacent to several acidic amino acid stretches - formerly indicated to be involved in CPR:CYP interactions - or close to two tyrosine residues suggested to be involved in FMN binding. Several of the identified positions co-localize with mutations found in naturally occurring CPR variants that were previously shown to cause CYP-isoform-dependent effects. The mutations do not seem to significantly alter the geometry of the FMN-domain but are likely to cause very subtle alterations leading to improved interaction with a specific CYP. Overall, these data suggest that CYPs interact with CPR using an isoform specific combination of several binding motifs of the FMN-domain.
Collapse
Affiliation(s)
- Francisco Esteves
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana Campelo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Sophie Bozonnet
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Thomas Lautier
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Michel Kranendonk
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Hussain R, Yadav R, Ahmed M, Khan TA, Kumar D, Akhter Y. Interplay between two spin states determines the hydroxylation catalyzed by P
450
monooxygenase from
Trichoderma brevicompactum. J Comput Chem 2020; 41:1330-1336. [DOI: 10.1002/jcc.26177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Razak Hussain
- Department of BotanyAligarh Muslim University Aligarh Uttar Pradesh India
| | - Rolly Yadav
- Department of Applied PhysicsSchool for Physical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
| | - Mushtaq Ahmed
- Centre for Molecular BiologySchool of Life Sciences, Central University of Jammu Bagla Jammu and Kashmir India
| | - Tabreiz A. Khan
- Department of BotanyAligarh Muslim University Aligarh Uttar Pradesh India
| | - Devesh Kumar
- Department of Applied PhysicsSchool for Physical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
| | - Yusuf Akhter
- Department of BiotechnologyBabasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
| |
Collapse
|
19
|
Zhang W, Du L, Li F, Zhang X, Qu Z, Han L, Li Z, Sun J, Qi F, Yao Q, Sun Y, Geng C, Li S. Mechanistic Insights into Interactions between Bacterial Class I P450 Enzymes and Redox Partners. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02913] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Lei Du
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Fengwei Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Zepeng Qu
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Jingran Sun
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Fengxia Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Qiuping Yao
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Yue Sun
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
20
|
Bakkes PJ, Riehm JL, Sagadin T, Rühlmann A, Schubert P, Biemann S, Girhard M, Hutter MC, Bernhardt R, Urlacher VB. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Sci Rep 2017; 7:9570. [PMID: 28852040 PMCID: PMC5575160 DOI: 10.1038/s41598-017-10075-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Most bacterial cytochrome P450 monooxygenases (P450s or CYPs) require two redox partner proteins for activity. To reduce complexity of the redox chain, the Bacillus subtilis flavodoxin YkuN (Y) was fused to the Escherichia coli flavodoxin reductase Fpr (R), and activity was tuned by placing flexible (GGGGS)n or rigid ([E/L]PPPP)n linkers (n = 1–5) in between. P-linker constructs typically outperformed their G-linker counterparts, with superior performance of YR-P5, which carries linker ([E/L]PPPP)5. Molecular dynamics simulations demonstrated that ([E/L]PPPP)n linkers are intrinsically rigid, whereas (GGGGS)n linkers are highly flexible and biochemical experiments suggest a higher degree of separation between the fusion partners in case of long rigid P-linkers. The catalytic properties of the individual redox partners were best preserved in the YR-P5 construct. In comparison to the separate redox partners, YR-P5 exhibited attenuated rates of NADPH oxidation and heme iron (III) reduction, while coupling efficiency was improved (28% vs. 49% coupling with B. subtilis CYP109B1, and 44% vs. 50% with Thermobifida fusca CYP154E1). In addition, YR-P5 supported monooxygenase activity of the CYP106A2 from Bacillus megaterium and bovine CYP21A2. The versatile YR-P5 may serve as a non-physiological electron transfer system for exploitation of the catalytic potential of other P450s.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Jan L Riehm
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany
| | - Tanja Sagadin
- Institute of Biochemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Ansgar Rühlmann
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Peter Schubert
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Stefan Biemann
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
21
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
22
|
Venkatachalam A, Parashar A, Manoj KM. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacol 2016; 4:2. [PMID: 26894412 PMCID: PMC4760962 DOI: 10.1186/s40203-016-0016-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The currently held mechanistic understanding of microsomal cytochrome P450s (CYPs) seeks that diverse drug molecules bind within the deep-seated distal heme pocket and subsequently react at the heme centre. To explain a bevy of experimental observations and meta-analyses, we indulge a hypothesis that involves a "diffusible radical mediated" mechanism. This new hypothesis posits that many substrates could also bind at alternate loci on/within the enzyme and be reacted without the pertinent moiety accessing a bonding proximity to the purported catalytic Fe-O enzyme intermediate. METHODS Through blind and heme-distal pocket centered dockings of various substrates and non-substrates (drug molecules of diverse sizes, classes, topographies etc.) of microsomal CYPs, we explored the possibility of access of substrates via the distal channels, its binding energies, docking orientations, distance of reactive moieties (or molecule per se) to/from the heme centre, etc. We investigated specific cases like- (a) large drug molecules as substrates, (b) classical marker drug substrates, (c) class of drugs as substrates (Sartans, Statins etc.), (d) substrate preferences between related and unrelated CYPs, (e) man-made site-directed mutants' and naturally occurring mutants' reactivity and metabolic disposition, (f) drug-drug interactions, (g) overall affinities of drug substrate versus oxidized product, (h) meta-analysis of in silico versus experimental binding constants and reaction/residence times etc. RESULTS It was found that heme-centered dockings of the substrate/modulator drug molecules with the available CYP crystal structures gave poor docking geometries and distances from Fe-heme centre. In conjunction with several other arguments, the findings discount the relevance of erstwhile hypothesis in many CYP systems. Consequently, the newly proposed hypothesis is deemed a viable alternate, as it satisfies Occam's razor. CONCLUSIONS The new proposal affords expanded scope for explaining the mechanism, kinetics and overall phenomenology of CYP mediated drug metabolism. It is now understood that the heme-iron and the hydrophobic distal pocket of CYPs serve primarily to stabilize the reactive intermediate (diffusible radical) and the surface or crypts of the apoprotein bind to the xenobiotic substrate (and in some cases, the heme distal pocket could also serve the latter function). Thus, CYPs enhance reaction rates and selectivity/specificity via a hitherto unrecognized modality.
Collapse
Affiliation(s)
- Avanthika Venkatachalam
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
| | - Abhinav Parashar
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
| | - Kelath Murali Manoj
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Kerala, 679122, India.
| |
Collapse
|
23
|
Gricman Ł, Weissenborn MJ, Hoffmann SM, Borlinghaus N, Hauer B, Pleiss J. Redox Partner Interaction Sites in Cytochrome P450 Monooxygenases:In SilicoAnalysis and Experimental Validation. ChemistrySelect 2016. [DOI: 10.1002/slct.201600369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Łukasz Gricman
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Martin J. Weissenborn
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sara M. Hoffmann
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Niels Borlinghaus
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
24
|
HUANG WENJUAN, ZHANG XIA, CHEN WEIWEI. Role of oxidative stress in Alzheimer's disease. Biomed Rep 2016; 4:519-522. [PMID: 27123241 PMCID: PMC4840676 DOI: 10.3892/br.2016.630] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of disability in individuals aged >65 years worldwide. AD is characterized by the abnormal deposition of amyloid β (Aβ) peptide, and intracellular accumulation of neurofibrillary tangles of hyperphosphorylated τ protein and dementia. The neurotoxic oligomer Aβ peptide, which is the neuropathological diagnostic criterion of the disease, together with τ protein, are mediators of the neurodegeneration that is among the main causative factors. However, these phenomena are mainly initiated and enhanced by oxidative stress, a process referring to an imbalance between antioxidants and oxidants in favour of oxidants. This imbalance can occur as a result of increased free radicals or a decrease in antioxidant defense, free radicals being a species that contains one or more unpaired electrons in its outer shell. The major source of potent free radicals is the reduction of molecular oxygen in water, that initially yields the superoxide radical, which produces hydrogen peroxide by the addition of an electron. The reduction of hydrogen peroxide produces highly reactive hydroxyl radicals, termed reactive oxygen species (ROS) that can react with lipids, proteins, nucleic acids, and other molecules and may also alter their structures and functions. Thus, tissues and organs, particularly the brain, a vulnerable organ, are affected by ROS due to its composition. The brain is largely composed of easily oxidizable lipids while featuring a high oxygen consumption rate. The current review examined the role of oxidative stress in AD.
Collapse
Affiliation(s)
- WEN-JUAN HUANG
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - XIA ZHANG
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - WEI-WEI CHEN
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|