1
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
2
|
Ibanescu A, Olariu DI, Lutic D, Hulea V, Dragoi B. Engineering the Morphostructural Properties and Drug Loading Degree of Organic-Inorganic Fluorouracil-MgAl LDH Nanohybrids by Rational Control of Hydrothermal Treatment. ACS OMEGA 2023; 8:26102-26121. [PMID: 37521604 PMCID: PMC10372945 DOI: 10.1021/acsomega.3c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023]
Abstract
Layered double hydroxides (LDHs) or hydrotalcite-like compounds have attracted great attention for the delivery of anticancer drugs due to their 2D structure, exhibiting a high surface-to-volume ratio and a high chemical versatility. The drug is protected between the layers from which it is slowly released, thus increasing the therapeutic effect and minimizing the side effects associated to nonspecific targeting. This work aimed to design LDHs with Mg and Al (molar ratio of 2/1) in brucite-like layers, which retained fluorouracil (5-FU; 5-FU/Al = 1, molar ratio) in the interlayer gallery as the layers grow during the co-precipitation step of the synthesis. To rationally control the physicochemical properties, particularly the size of the crystallites, the aging step following the co-precipitation was performed under carefully controlled conditions by changing the time and temperature (i.e., 25 °C for 16 h, 100 °C for 16 h, and 120 °C for 24 h). The results revealed the achievement of the control of the size of the crystals, which are gathered in three different agglomeration systems, from tight to loose, as well as the loading degree of the drug in the final organic-inorganic hybrid nanomaterials. The role played by the factors and parameters affecting the drug-controlled release was highlighted by assessing the release behavior of 5-FU by changing the pH, solid mass/volume ratio, and ionic strength. The results showed a pH-dependent behavior but not necessarily in a direct proportionality. After a certain limit, the mass of the solid diminishes the rate of release, whereas the ionic strength is essential for the payload discharge.
Collapse
Affiliation(s)
- Alina Ibanescu
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Bvd., 700050 Iasi, Romania
| | - Dragos-Ioan Olariu
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemistry, Al. I. Cuza University, 11-Carol I Bvd., 700506 Iasi, Romania
| | - Doina Lutic
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemistry, Al. I. Cuza University, 11-Carol I Bvd., 700506 Iasi, Romania
| | - Vasile Hulea
- Institut
Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM,Montpellier 34296, France
| | - Brindusa Dragoi
- TRANSCEND
Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, 700483 Iasi, Romania
- Faculty
of Chemistry, Al. I. Cuza University, 11-Carol I Bvd., 700506 Iasi, Romania
| |
Collapse
|
3
|
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park DH. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7977. [PMID: 36431465 PMCID: PMC9694224 DOI: 10.3390/ma15227977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDHs) with two-dimensional nanostructure are inorganic materials that have attractive advantages such as biocompatibility, facile preparation, and high drug loading capacity for therapeutic bioapplications. Since the intercalation chemistry of DNA molecules into the LDH materials were reported, various LDH nanohybrids have been developed for biomedical drug delivery system. For these reasons, LDHs hybridized with numerous therapeutic agents have a significant role in cancer imaging and therapy with targeting functions. In this review, we summarized the recent advances in the preparation of LDH nanohybrids for cancer therapeutic strategies including gene therapy, chemotherapy, immunotherapy, and combination therapy.
Collapse
Affiliation(s)
- Joonghak Lee
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Gyeonggi, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Gangwondo, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Karmakar AK, Hasan MS, Sreemani A, Das Jayanta A, Hasan MM, Tithe NA, Biswas P. A review on the current progress of layered double hydroxide application in biomedical sectors. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:801. [DOI: 10.1140/epjp/s13360-022-02993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2025]
|
5
|
Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release 2020; 330:398-426. [PMID: 33383094 DOI: 10.1016/j.jconrel.2020.12.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of nanomaterials that attained great attention as a carrier for drug delivery applications. The lamellar structure of this compound exhibits a high surface-to-volume ratio which enables the intercalation of therapeutic agents and releases them at the target site, thereby reducing the adverse effect. Moreover, the intercalated drug can be released in a sustained manner, and hence the frequency of drug administration can be decreased. The co-precipitation, ion exchange, manual grinding, and sol-gel methods are the most employed for their synthesis. The unique properties like the ease of synthesis, low cost, high biocompatibility, and low toxicity render them suitable for biomedical applications. This review presents the advances in the structure, properties, method of preparation, types, functionalization, and drug delivery applications of LDH. Also, this review provides various new conceptual insights that can form the basis for new research questions related to the drug delivery applications of LDH.
Collapse
Affiliation(s)
- V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
6
|
Eom S, Choi G, Nakamura H, Choy JH. 2-Dimensional Nanomaterials with Imaging and Diagnostic Functions for Nanomedicine; A Review. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190270] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sairan Eom
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
7
|
Peng L, Mei X, He J, Xu J, Zhang W, Liang R, Wei M, Evans DG, Duan X. Monolayer Nanosheets with an Extremely High Drug Loading toward Controlled Delivery and Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018. [PMID: 29537662 DOI: 10.1002/adma.201707389] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
2D nanomaterials have attracted considerable research interest in drug delivery systems, owing to their intriguing quantum size and surface effect. Herein, Gd3+ -doped monolayered-double-hydroxide (MLDH) nanosheets are prepared via a facile bottom-up synthesis method, with a precisely controlled composition and uniform morphology. MLDH nanosheets as drug carrier are demonstrated in coloading of doxorubicin and indocyanine green (DOX&ICG), with an ultrahigh drug loading content (LC) of 797.36% and an encapsulation efficiency (EE) of 99.67%. This is, as far as it is known, the highest LC level at nearly 100% of EE among previously reported 2D drug delivery systems so far. Interestingly, the as-prepared DOX&ICG/MLDH composite material shows both pH-controlled and near-infrared-irradiation-induced DOX release, which holds a promise in stimulated drug release. An in vivo dual-mode imaging, including near-infrared fluorescence and magnetic resonance imaging, enables a noninvasive visualization of distribution profiles at the tumor site. In addition, in vitro and in vivo therapeutic evaluations demonstrate an excellent trimode synergetic anticancer activity and superior biocompatibility of DOX&ICG/MLDH. Therefore, MLDH nanosheets provide new perspectives in the design of multifunctional nanomedicine, which shows promising applications in controlled drug delivery and cancer theranostics.
Collapse
Affiliation(s)
- Liuqi Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Jiekun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Weiku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - David G Evans
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Choi G, Eom S, Vinu A, Choy JH. 2D Nanostructured Metal Hydroxides with Gene Delivery and Theranostic Functions; A Comprehensive Review. CHEM REC 2018; 18:1033-1053. [DOI: 10.1002/tcr.201700091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Goeun Choi
- Center for Intelligent Nano-Bio Materials (CINBM) Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Sairan Eom
- Center for Intelligent Nano-Bio Materials (CINBM) Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Natural Built Environment The University of Newcastle; University Drive; Callaghan NSW 2308 Australia
| | - Jin-Ho Choy
- Center for Intelligent Nano-Bio Materials (CINBM) Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
9
|
Djebbi MA, Bouaziz Z, Elabed A, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara ABH. Preparation and optimization of a drug delivery system based on berberine chloride-immobilized MgAl hydrotalcite. Int J Pharm 2016; 506:438-48. [DOI: 10.1016/j.ijpharm.2016.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/31/2022]
|
10
|
Guan S, Liang R, Li C, Yan D, Wei M, Evans DG, Duan X. A layered drug nanovehicle toward targeted cancer imaging and therapy. J Mater Chem B 2016; 4:1331-1336. [DOI: 10.1039/c5tb02521d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A layered drug nanovehicle with superior anticancer performance was fabricated via the co-intercalation of doxorubicin (DOX) and folic acid (FA) into the gallery of layered double hydroxides (LDHs), which can be potentially applied in medical imaging/therapy.
Collapse
Affiliation(s)
- Shanyue Guan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Chunyang Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Dan Yan
- Beijing Shijitan Hospital Capital Medical University Beijing
- P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - David G. Evans
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|