1
|
Antic SD, Yan P, Acker CD, Spagnola OT, Erol ZY, Baser O, Loew LM. ElectroFluor Voltage-Sensitive Dyes: Comprehensive Analysis of Wavelength-Dependent Sensitivity and Cross-Channel Bleed-Through. JOURNAL OF BIOPHOTONICS 2025:e70008. [PMID: 40103315 DOI: 10.1002/jbio.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
New voltage-sensitive ElectroFluor (EF) dyes that emit across the visible and near-infrared spectrum (e.g., 730 nm) were recently developed. We evaluated EF-530, EF-630, and EF-730p-dyes spectrally orthogonal to green fluorescent protein (GFP)-at excitation wavelengths outside the conventional 470 nm range used for GFP-based indicators. Although previously applied in cardiac voltage imaging, their performance in neuronal tissue remains untested. We performed side-by-side comparisons using population voltage imaging in mouse cerebral cortex slices at optimal excitation wavelengths (530, 630, and 730 nm) and assessed cross-channel signal bleed-through across four excitation wavelengths (475, 530, 630, and 730 nm). All dyes produced robust optical signals at their optimal wavelengths, though non-preferred channels exhibited bleed-through with distinct amplitudes, polarities, and photobleaching patterns. These results provide detailed quantifications of EF dye performance for neuronal population imaging.
Collapse
Affiliation(s)
- Srdjan D Antic
- Neuroscience, UConn Health, School of Medicine, Institute for Systems Genomics, Farmington, Connecticut, USA
- Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, Connecticut, USA
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Corey D Acker
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Olivia T Spagnola
- Neuroscience, UConn Health, School of Medicine, Institute for Systems Genomics, Farmington, Connecticut, USA
| | - Zehra Y Erol
- Neuroscience, UConn Health, School of Medicine, Institute for Systems Genomics, Farmington, Connecticut, USA
- Department of Physiology, Institute of Health Sciences, Yeditepe University, Istanbul, Turkey
| | - Ozge Baser
- Neuroscience, UConn Health, School of Medicine, Institute for Systems Genomics, Farmington, Connecticut, USA
- Department of Physiology, Institute of Health Sciences, Yeditepe University, Istanbul, Turkey
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Qi Y, Fung LY, Chipot C, Wang Y. Probing the orientation and membrane permeation of rhodamine voltage reporters through molecular simulations and free energy calculations. J Mater Chem B 2025; 13:2015-2028. [PMID: 39791319 DOI: 10.1039/d4tb02670e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs. Our results indicate that the positioning of the most polarized functional group relative to the hydrophobic molecular wire dictates the alignment of RhoVRs with the membrane normal, thereby, significantly affecting their voltage sensitivity. Free-energy calculations in different membrane systems identify significantly higher barriers against the permeation of RhoVR 1 compared to SPIRIT RhoVR 1, explaining their distinct subcellular localization profiles. Subsequent free-energy calculations of the distinguishing components from the two different RhoVRs provide additional insight into the physicochemical properties governing their membrane permeation. The connection between chemical composition and membrane orientation, as well as permeation behaviors of RhoVRs revealed by our calculations provides general guiding principles for the rational design of PeT-based fluorescent dyes with enhanced voltage sensitivity and desired subcellular distribution.
Collapse
Affiliation(s)
- Yajing Qi
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Lap Yan Fung
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana Champaign, Unité Mixte de Recherche no. 7019, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France.
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Jung Y, Nakajima R, Ahn SM, Frankiv N, Lee H, Im M, Song YK, Baker BJ. Mapping Synaptic Activity at the Population and Cellular Levels with Genetically Encoded Voltage Indicators (GEVIs). Methods Mol Biol 2025; 2910:239-251. [PMID: 40220103 DOI: 10.1007/978-1-0716-4446-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
In this chapter, we provide examples of using genetically encoded voltage indicators (GEVIs) to monitor neuronal intercellular communications at the population level (hippocampus of CA1 region) and individual cell level (retinal ganglion cells). Providing an optical readout for voltage transients, GEVIs enable the reporting of synaptic activity, both activation and inhibition, from chemical and electrical synapses. With the added flexibility of restricting expression of the GEVI to distinct cell types, GEVIs are becoming a powerful tool for interrogating neuronal activity.
Collapse
Affiliation(s)
- Younginha Jung
- Bioimaging Data Curation Center, Ewha Womans University, Seoul, Republic of Korea
| | - Ryuichi Nakajima
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sung Min Ahn
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Nazarii Frankiv
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Haeun Lee
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Maesoon Im
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yoon-Kyu Song
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Bradley J Baker
- Brain Science Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
- Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Patton HN, Zhang H, Wood GA, Guragain B, Nagahawatte ND, Nisbet LA, Cheng LK, Walcott GP, Rogers JM. Simultaneous optical imaging of gastric slow waves and contractions in the in vivo porcine stomach. Am J Physiol Gastrointest Liver Physiol 2024; 327:G765-G782. [PMID: 39189971 PMCID: PMC11684892 DOI: 10.1152/ajpgi.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Gastric peristalsis is governed by electrical "slow waves" generally assumed to travel from proximal to distal stomach (antegrade propagation) in symmetric rings. Although alternative slow-wave patterns have been correlated with gastric disorders, their mechanisms and how they alter contractions remain understudied. Optical electromechanical mapping, a developing field in cardiac electrophysiology, images electrical and mechanical physiology simultaneously. Here, we translate this technology to the in vivo porcine stomach. Stomachs were surgically exposed and a fluorescent dye (di-4-ANEQ(F)PTEA) that transduces the membrane potential (Vm) was injected through the right gastroepiploic artery. Fluorescence was excited by LEDs and imaged with one or two 256 × 256 pixel cameras. Motion artifact was corrected using a marker-based motion-tracking method and excitation ratiometry, which cancels common-mode artifact. Tracking marker displacement also enabled gastric deformation to be measured. We validated detection of electrical activation and Vm morphology against alternative nonoptical technologies. Nonantegrade slow waves and propagation direction differences between the anterior and posterior stomach were commonly present in our data. However, sham experiments suggest they were a feature of the animal preparation and not an artifact of optical mapping. In experiments to demonstrate the method's capabilities, we found that repolarization did not always follow at a fixed time behind activation "wavefronts," which could be a factor in dysrhythmia. Contraction strength and the latency between electrical activation and contraction differed between antegrade and nonantegrade propagation. In conclusion, optical electromechanical mapping, which simultaneously images electrical and mechanical activity, enables novel questions regarding normal and abnormal gastric physiology to be explored.NEW & NOTEWORTHY This article introduces a novel method for imaging gastric electrophysiology and mechanical function simultaneously in anesthetized, open-abdomen pigs. We demonstrate it by observing propagating slow-wave depolarization and repolarization along with the strength, spatial distribution, and direction of contractions. In addition, we observe that in this animal preparation, slow waves often do not propagate from the proximal to distal stomach and are frequently asymmetric between the anterior and posterior sides of the stomach.
Collapse
Affiliation(s)
- Haley N Patton
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Garrett A Wood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bijay Guragain
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Linley A Nisbet
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gregory P Walcott
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Mandracchia B, Zheng C, Rajendran S, Liu W, Forghani P, Xu C, Jia S. High-speed optical imaging with sCMOS pixel reassignment. Nat Commun 2024; 15:4598. [PMID: 38816394 PMCID: PMC11139943 DOI: 10.1038/s41467-024-48987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorescence microscopy has undergone rapid advancements, offering unprecedented visualization of biological events and shedding light on the intricate mechanisms governing living organisms. However, the exploration of rapid biological dynamics still poses a significant challenge due to the limitations of current digital camera architectures and the inherent compromise between imaging speed and other capabilities. Here, we introduce sHAPR, a high-speed acquisition technique that leverages the operating principles of sCMOS cameras to capture fast cellular and subcellular processes. sHAPR harnesses custom fiber optics to convert microscopy images into one-dimensional recordings, enabling acquisition at the maximum camera readout rate, typically between 25 and 250 kHz. We have demonstrated the utility of sHAPR with a variety of phantom and dynamic systems, including high-throughput flow cytometry, cardiomyocyte contraction, and neuronal calcium waves, using a standard epi-fluorescence microscope. sHAPR is highly adaptable and can be integrated into existing microscopy systems without requiring extensive platform modifications. This method pushes the boundaries of current fluorescence imaging capabilities, opening up new avenues for investigating high-speed biological phenomena.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- E.T.S.I. Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Corey Zheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Suraj Rajendran
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Lam CK, Fung LY, Wang Y. Orientation and Membrane Partition Free Energy of PeT-Based Voltage-Sensitive Dyes from Molecular Simulations. J Phys Chem B 2024; 128:2734-2744. [PMID: 38459942 PMCID: PMC10961725 DOI: 10.1021/acs.jpcb.3c08090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Voltage measurement via small-molecule fluorescent indicators is a valuable approach in deciphering complex dynamics in electrically excitable cells. However, our understanding of various physicochemical properties governing the performance of fluorescent voltage sensors based on the photoinduced electron transfer (PeT) mechanism remains incomplete. Here, through extensive molecular dynamics and free energy calculations, we systematically examine the orientation and membrane partition of three PeT-based voltage-sensing VoltageFluor (VF) dyes in different lipid environment. We show that the symmetry of the molecular scaffold and the net charge of the hydrophilic headgroup of a given VF dye dominate its orientation and membrane partition, respectively. Our work provides a mechanistic understanding of the physical properties contributing to the voltage sensitivity, signal-to-noise ratio, as well as membrane distribution of VF dyes and sheds light onto rational design principles of PeT-based fluorescent probes in general.
Collapse
Affiliation(s)
- Chun Kei Lam
- Department of Physics, The
Chinese University
of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lap Yan Fung
- Department of Physics, The
Chinese University
of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wang
- Department of Physics, The
Chinese University
of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Djemai M, Cupelli M, Boutjdir M, Chahine M. Optical Mapping of Cardiomyocytes in Monolayer Derived from Induced Pluripotent Stem Cells. Cells 2023; 12:2168. [PMID: 37681899 PMCID: PMC10487143 DOI: 10.3390/cells12172168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.
Collapse
Affiliation(s)
- Mohammed Djemai
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Ma Y, Shu WC, Lin L, Cao XJ, Oertel D, Smith PH, Jackson MB. Imaging Voltage Globally and in Isofrequency Lamina in Slices of Mouse Ventral Cochlear Nucleus. eNeuro 2023; 10:ENEURO.0465-22.2023. [PMID: 36792362 PMCID: PMC9997695 DOI: 10.1523/eneuro.0465-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The cochlear nuclei (CNs) receive sensory information from the ear and perform fundamental computations before relaying this information to higher processing centers. These computations are performed by distinct types of neurons interconnected in circuits dedicated to the specialized roles of the auditory system. In the present study, we explored the use of voltage imaging to investigate CN circuitry. We tested two approaches based on fundamentally different voltage sensing technologies. Using a voltage-sensitive dye we recorded glutamate receptor-independent signals arising predominantly from axons. The mean conduction velocity of these fibers of 0.27 m/s was rapid but in range with other unmyelinated axons. We then used a genetically-encoded hybrid voltage sensor (hVOS) to image voltage from a specific population of neurons. Probe expression was controlled using Cre recombinase linked to c-fos activation. This activity-induced gene enabled targeting of neurons that are activated when a mouse hears a pure 15-kHz tone. In CN slices from these animals auditory nerve fiber stimulation elicited a glutamate receptor-dependent depolarization in hVOS probe-labeled neurons. These cells resided within a band corresponding to an isofrequency lamina, and responded with a high degree of synchrony. In contrast to the axonal origin of voltage-sensitive dye signals, hVOS signals represent predominantly postsynaptic responses. The introduction of voltage imaging to the CN creates the opportunity to investigate auditory processing circuitry in populations of neurons targeted on the basis of their genetic identity and their roles in sensory processing.
Collapse
Affiliation(s)
- Yihe Ma
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Wen-Chi Shu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Lin Lin
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Xiao-Jie Cao
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Donata Oertel
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
9
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
10
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
11
|
Current problems and future avenues in proteoliposome research. Biochem Soc Trans 2021; 48:1473-1492. [PMID: 32830854 DOI: 10.1042/bst20190966] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Membrane proteins (MPs) are the gatekeepers between different biological compartments separated by lipid bilayers. Being receptors, channels, transporters, or primary pumps, they fulfill a wide variety of cellular functions and their importance is reflected in the increasing number of drugs that target MPs. Functional studies of MPs within a native cellular context, however, is difficult due to the innate complexity of the densely packed membranes. Over the past decades, detergent-based extraction and purification of MPs and their reconstitution into lipid mimetic systems has been a very powerful tool to simplify the experimental system. In this review, we focus on proteoliposomes that have become an indispensable experimental system for enzymes with a vectorial function, including many of the here described energy transducing MPs. We first address long standing questions on the difficulty of successful reconstitution and controlled orientation of MPs into liposomes. A special emphasis is given on coreconstitution of several MPs into the same bilayer. Second, we discuss recent progress in the development of fluorescent dyes that offer sensitive detection with high temporal resolution. Finally, we briefly cover the use of giant unilamellar vesicles for the investigation of complex enzymatic cascades, a very promising experimental tool considering our increasing knowledge of the interplay of different cellular components.
Collapse
|
12
|
Acker CD, Yan P, Loew LM. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:3-10. [PMID: 31474387 PMCID: PMC7048644 DOI: 10.1016/j.pbiomolbio.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The first workshop on Novel Optics-based approaches for Cardiac Electrophysiology (NOtiCE) was held in Florence Italy in 2018. Here, we learned how optical approaches have shaped our basic understanding of cardiac electrophysiology and how new technologies and approaches are being developed and validated to advance the field. Several technologies are being developed that may one day allow for new clinical approaches for diagnosing cardiac disorders and possibly intervening to treat human patients. In this review, we discuss several technologies and approaches to optical voltage imaging with voltage-sensitive dyes. We highlight the development and application of fluorinated and long wavelength voltage-sensitive dyes. These optical voltage sensors have now been applied and well validated in several different assays from cultured human stem cell-derived cardiomyocytes to whole hearts in-vivo. Imaging concepts such as dual wavelength ratiometric techniques, which are crucial to maximizing the information from optical sensors by increasing the useful signal and eliminating noise and artifacts, are presented. Finally, novel voltage sensors including photoacoustic voltage-sensitive dyes, their current capabilities and potential advantages, are introduced.
Collapse
Affiliation(s)
- Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
13
|
Filipe HAL, Moreno MJ, Loura LMS. The Secret Lives of Fluorescent Membrane Probes as Revealed by Molecular Dynamics Simulations. Molecules 2020; 25:E3424. [PMID: 32731549 PMCID: PMC7435664 DOI: 10.3390/molecules25153424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorescent probes have been employed for more than half a century to study the structure and dynamics of model and biological membranes, using spectroscopic and/or microscopic experimental approaches. While their utilization has led to tremendous progress in our knowledge of membrane biophysics and physiology, in some respects the behavior of bilayer-inserted membrane probes has long remained inscrutable. The location, orientation and interaction of fluorophores with lipid and/or water molecules are often not well known, and they are crucial for understanding what the probe is actually reporting. Moreover, because the probe is an extraneous inclusion, it may perturb the properties of the host membrane system, altering the very properties it is supposed to measure. For these reasons, the need for independent methodologies to assess the behavior of bilayer-inserted fluorescence probes has been recognized for a long time. Because of recent improvements in computational tools, molecular dynamics (MD) simulations have become a popular means of obtaining this important information. The present review addresses MD studies of all major classes of fluorescent membrane probes, focusing in the period between 2011 and 2020, during which such work has undergone a dramatic surge in both the number of studies and the variety of probes and properties accessed.
Collapse
Affiliation(s)
- Hugo A. L. Filipe
- Chemistry Department, Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Moreno
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Chemistry Department, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center and CNC—Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Zoccoler M, de Oliveira PX. METROID: an automated method for robust quantification of subcellular fluorescence events at low SNR. BMC Bioinformatics 2020; 21:332. [PMID: 32709217 PMCID: PMC7379836 DOI: 10.1186/s12859-020-03661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. As an example, voltage sensitive dyes (VSD) have been used to measure membrane potentials. Yet, even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP). This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Signal processing techniques like blind source separation (BSS) are designed to separate a multichannel mixture of signals into uncorrelated or independent sources, whose potential to separate ROI signal from noise has been poorly explored. Our aims are to develop a method capable of retrieving subcellular events with minimal a priori information from noisy cell fluorescence images and to provide it as a computational tool to be readily employed by the scientific community. Results In this paper, we have developed METROID (Morphological Extraction of Transmembrane potential from Regions Of Interest Device), a new computational tool to filter fluorescence signals from multiple ROIs, whose code and graphical interface are freely available. In this tool, we developed a new ROI definition procedure to automatically generate similar-area ROIs that follow cell shape. In addition, simulations and real data analysis were performed to recover AP and electroporation signals contaminated by noise by means of four types of BSS: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT). All these strategies allowed for signal extraction at low SNR (− 10 dB) without apparent signal distortion. Conclusions We demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments. We provide this novel biomedical application with a graphical user interface at 10.6084/m9.figshare.11344046.v1, and its code and datasets are available in GitHub at https://github.com/zoccoler/metroid.
Collapse
Affiliation(s)
- Marcelo Zoccoler
- Department of Biomedical Engineering (DEB), School of Electrical and Computer Engineering, University of Campinas, 400, Albert Einstein Avenue, Campinas, SP, 13083-852, Brazil.
| | - Pedro X de Oliveira
- Department of Biomedical Engineering (DEB), School of Electrical and Computer Engineering, University of Campinas, 400, Albert Einstein Avenue, Campinas, SP, 13083-852, Brazil.,Center for Biomedical Engineering (CEB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Fiala T, Wang J, Dunn M, Šebej P, Choi SJ, Nwadibia EC, Fialova E, Martinez DM, Cheetham CE, Fogle KJ, Palladino MJ, Freyberg Z, Sulzer D, Sames D. Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. J Am Chem Soc 2020; 142:9285-9301. [PMID: 32395989 DOI: 10.1021/jacs.0c00861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of VSDs by dynamic encapsulation and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.
Collapse
Affiliation(s)
- Tomas Fiala
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jihang Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Dunn
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter Šebej
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Se Joon Choi
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States
| | - Ekeoma C Nwadibia
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Fialova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Diana M Martinez
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States
| | - Claire E Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Keri J Fogle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Institute of Neurodegenerative Diseases (PIND), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Institute of Neurodegenerative Diseases (PIND), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Molecular Therapeutics, New York Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,NeuroTechnology Center at Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Lu Q, Kole GK, Friedrich A, Müller-Buschbaum K, Liu Z, Yu X, Marder TB. Comparison Study of the Site-Effect on Regioisomeric Pyridyl–Pyrene Conjugates: Synthesis, Structures, and Photophysical Properties. J Org Chem 2020; 85:4256-4266. [PMID: 32129624 DOI: 10.1021/acs.joc.9b03421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Lu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Goutam Kumar Kole
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Klaus Müller-Buschbaum
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Todd B. Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
17
|
Nag OK, Jeong JE, Le VS, Oh E, Woo HY, Delehanty JB. Anionic Conjugated Polyelectrolytes for FRET-based Imaging of Cellular Membrane Potential. Photochem Photobiol 2020; 96:834-844. [PMID: 32083762 DOI: 10.1111/php.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
We report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt™ ). We observe FRET between FsPFc10 and FluoVolt™ , where the enhancement in FRET-sensitized emission from FluoVolt™ is measured at various donor/acceptor ratios. At a donor/acceptor ratio of 1, the excitation of FluoVolt™ in a FRET configuration results in a three-fold enhancement in its fluorescence emission (compared to when it is excited directly). FsPFc10 efficiently labels the plasma membrane of HEK 293T/17 cells and remains resident with minimal cellular internalization for ~ 1.5 h. The successful plasma membrane-associated colabeling of the cells with the FsPFc10-FluoVolt™ donor-acceptor pair is confirmed by dual-channel confocal imaging. Importantly, cells labeled with FsPFc10 show excellent cellular viability with no adverse effect on cell membrane depolarization. During depolarization of membrane potential, HEK 293T/17 cells labeled with the donor-acceptor FRET pair exhibit a greater fluorescence response in FluoVolt™ emission relative to when FluoVolt™ is used as the sole imaging probe. These results demonstrate the conjugated polyelectrolyte to be a new class of membrane labeling fluorophore for use in voltage sensing schemes.
Collapse
Affiliation(s)
- Okhil K Nag
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC
| | - Ji-Eun Jeong
- Department of Chemistry, Korea University, Seoul, Korea
| | - Van Sang Le
- Department of Chemistry, Korea University, Seoul, Korea
| | - Eunkeu Oh
- Naval Research Laboratory, Optical Sciences Division, Washington, DC
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, Korea
| | - James B Delehanty
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC
| |
Collapse
|
18
|
Nesmith HW, Zhang H, Rogers JM. Optical mapping of electromechanics in intact organs. Exp Biol Med (Maywood) 2019; 245:368-373. [PMID: 31842618 DOI: 10.1177/1535370219894942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Optical mapping has become a widely used and important method in cardiac electrophysiology. The method typically uses voltage-sensitive fluorescent dyes and high-speed cameras to image propagation of electrical waves. However, signals are highly susceptible to artifact caused by motion of the target organ. Consequently, cardiac optical mapping is traditionally performed in isolated, perfused organs whose contraction has been pharmacologically arrested. This has prevented optical mapping from being used to study interactions between electrical and mechanical motion. However, recently, a number of groups have developed methods to implement cardiac optical mapping in the presence of motion. These methods employ two basic strategies: (1) compensate for motion by measuring it or (2) ratiometry. In ratiometry, two signals are recorded from each site. The signals have differing sensitivity to membrane potential, but common motion artifact, which can be cancelled by taking the ratio of the two signals. Some methods use both of these strategies. Methods that measure motion have the additional advantage that this information can be used to quantify the organ’s mechanical function. Doing so enables combined “electromechanical mapping,” which allows optical study of electromechanical interactions. By allowing recording in the presence of motion, the new methods open the door to optical recording in in-vivo preparations. In addition, it is possible to implement electromechanical optical mapping techniques in organ systems other than the heart. For example, it was recently shown that optical mapping of slow wave propagation in the swine stomach is feasible. Such studies have the potential to uncover new information on the role of dysrhythmic slow wave propagation in gastric motility disorders. Impact statement Electrical and mechanical functions in the heart are bidirectionally coupled, yet are usually studied separately because of the different instrumentation technologies that are used in the two areas. Optical mapping is a powerful and widespread tool for imaging electrical propagation, but has traditionally required mechanical function to be arrested. Recently new methods have been devised that enable optical mapping to be performed in beating hearts and also to simultaneously quantify mechanical function. These new technologies promise to yield new information about electromechanical interactions in normal and pathological settings. They are also beginning to find application in other organ systems such as the gastrointestinal tract where they may provide new insight into motility disorders.
Collapse
Affiliation(s)
- Haley W Nesmith
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Abstract
As a "holy grail" of neuroscience, optical imaging of membrane potential could enable high resolution measurements of spiking and synaptic activity in neuronal populations. This has been partly achieved using organic voltage-sensitive dyes in vitro, or in invertebrate preparations yet unspecific staining has prevented single-cell resolution measurements from mammalian preparations in vivo. The development of genetically encoded voltage indicators (GEVIs) and chemogenetic sensors has enabled targeting voltage indicators to plasma membranes and selective neuronal populations. Here, we review recent advances in the design and use of genetic voltage indicators and discuss advantages and disadvantages of three classes of them. Although genetic voltage indicators could revolutionize neuroscience, there are still significant challenges, particularly two-photon performance. To overcome them may require cross-disciplinary collaborations, team effort, and sustained support by large-scale research initiatives.
Collapse
Affiliation(s)
- Yuki Bando
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA
- Present address: Department Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Christiane Grimm
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA
| | - Victor H Cornejo
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
20
|
Zhang H, Yu H, Walcott GP, Paskaranandavadivel N, Cheng LK, O’Grady G, Rogers JM. High-resolution optical mapping of gastric slow wave propagation. Neurogastroenterol Motil 2019; 31:e13449. [PMID: 30129082 PMCID: PMC6724537 DOI: 10.1111/nmo.13449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/20/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Improved understanding of the details of gastric slow wave propagation could potentially inform new diagnosis and treatment options for stomach motility disorders. Optical mapping has been used extensively in cardiac electrophysiology. Although optical mapping has a number of advantages relative to electrical mapping, optical signals are highly sensitive to motion artifact. We recently introduced a novel cardiac optical mapping method that corrects motion artifact and enables optical mapping to be performed in beating hearts. Here, we reengineer the method as an experimental tool to map gastric slow waves. METHODS The method was developed and tested in 12 domestic farm pigs. Stomachs were exposed by laparotomy and stained with the voltage-sensitive fluorescence dye di-4-ANEPPS through a catheter placed in the gastroepiploic artery. Fiducial markers for motion tracking were attached to the serosa. The dye was excited by 450 or 505 nm light on alternate frames of an imaging camera running at 300 Hz. Emitted fluorescence was imaged between 607 and 695 nm. The optical slow wave signal was reconstructed using a combination of motion tracking and excitation ratiometry to suppress motion artifact. Optical slow wave signals were compared with simultaneously recorded bipolar electrograms and suction electrode signals, which approximate membrane potential. KEY RESULTS The morphology of optical slow waves was consistent with previously published microelectrode recordings and simultaneously recorded suction electrode signals. The timing of the optical slow wave signals was consistent with the bipolar electrograms. CONCLUSIONS AND INFERENCES Optical mapping of slow wave propagation in the stomach is feasible.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Han Yu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gregory P. Walcott
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States,Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Niranchan Paskaranandavadivel
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand,Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand,Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States
| | - Gregory O’Grady
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand,Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Jack M. Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States,Corresponding author: 1670 University Blvd, Volker Hall B140, Birmingham, AL, 35294, USA, (205) 975-2102,
| |
Collapse
|
21
|
Abstract
Voltage sensitive dyes (VSDs) are used for in vitro drug screening and for imaging of patterns of electrical activity in tissue. Wide application of this technology depends on the availability of sensors with high sensitivity (percent change of fluorescence per 100 mV), high fluorescence quantum yield, and fast response kinetics. A promising approach uses a two-component system consisting of anionic membrane permeable quenchers with fluorophores labeling one side of the membrane; this produces voltage-dependent fluorescence quenching. However, the quencher must be kept at low concentrations to minimize pharmacological effects, thus limiting sensitivity. By developing tethered bichromophoric fluorophore quencher (TBFQ) dyes, where the fluorophore and quencher are covalently connected by a long hydrophobic chain, the sensitivity is maximized and is independent of VSD concentration. A series of 13 TBFQ dyes based on the aminonaphthylethenylpyridinium (ANEP) fluorophore and the dipicrylamine anion (DPA) quencher have been synthesized and tested in an artificial lipid bilayer apparatus. The best of these, TBFQ1, shows a 2.5-fold change in fluorescence per 100 mV change in membrane potential, and the response kinetics is in the 10-20 ms range. This sensitivity is an order of magnitude better than that of commonly used VSDs. However, the fluorescence quantum yield is only 1.6%, which may make this first generation of TBFQ VSDs impractical for in vivo electrical imaging. Nevertheless, the design principles established here can serve as foundation for improved TBFQ VSDs. We believe this approach promises to greatly enhance our ability to monitor electrical activity in cells and tissues.
Collapse
Affiliation(s)
- Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Corey D. Acker
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Leslie M. Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
22
|
Kwon T, Sakamoto M, Peterka DS, Yuste R. Attenuation of Synaptic Potentials in Dendritic Spines. Cell Rep 2018; 20:1100-1110. [PMID: 28768195 DOI: 10.1016/j.celrep.2017.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022] Open
Abstract
Dendritic spines receive the majority of excitatory inputs in many mammalian neurons, but their biophysical properties and exact role in dendritic integration are still unclear. Here, we study spine electrical properties in cultured hippocampal neurons using an improved genetically encoded voltage indicator (ArcLight) and two-photon glutamate uncaging. We find that back-propagating action potentials (bAPs) fully invade dendritic spines. However, uncaging excitatory post-synaptic potentials (uEPSPs) generated by glutamate photorelease, ranging from 4 to 27 mV in amplitude, are attenuated by up to 4-fold as they propagate to the parent dendrites. Finally, the simultaneous occurrence of bAPs and uEPSPs results in sublinear summation of membrane potential. Our results demonstrate that spines can behave as electric compartments, reducing the synaptic inputs injected into the cell, while receiving bAPs are unmodified. The attenuation of EPSPs by spines could have important repercussions for synaptic plasticity and dendritic integration.
Collapse
Affiliation(s)
- Taekyung Kwon
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Masayuki Sakamoto
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
23
|
Abstract
Optical methods for interrogating membrane potential changes in neurons promise to revolutionize our ability to dissect the activity of individual cells embedded in neural circuits underlying behavior and sensation. A number of voltage imaging strategies have emerged in the past few years. This Perspective discusses developments in both small-molecule and genetically encoded fluorescent indicators of membrane potential. We survey recent advances in small-molecule fluorescent indicators that rely on photoinduced electron transfer to sense voltage as well as refinements of voltage-sensitive fluorescent proteins and new opsin-based strategies for monitoring voltage changes. We compare the requirements of fluorescent voltage indicators to those for more canonical Ca2+ sensing as a way to illuminate the particular challenges associated with voltage imaging.
Collapse
Affiliation(s)
- Rishikesh U. Kulkarni
- Department of Chemistry, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Mačianskienė R, Almanaitytė M, Treinys R, Navalinskas A, Benetis R, Jurevičius J. Spectral characteristics of voltage-sensitive indocyanine green fluorescence in the heart. Sci Rep 2017; 7:7983. [PMID: 28801595 PMCID: PMC5554165 DOI: 10.1038/s41598-017-08168-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Indocyanine green (ICG) fluorescent dye has been approved by the FDA for use in medical diagnostics. Recently, we demonstrated that ICG dye has voltage-sensitive properties with a dual-component (fast and slow) response in the Langendorff-perfused rabbit heart. Here, we extended our studies by showing the different spectral properties of both components for analysis of the fractional change in ICG fluorescence in response to voltage changes. We used light from four LEDs to obtain excitation; emission was measured using an EMCCD camera with band-pass filters and a spectrometer. We applied a graphical model with Gaussian functions to construct and evaluate the individual emission curves and calculated the voltage-sensitive portion of each component of the ICG fluorescence in the rabbit heart. The results revealed that each isolated component (fast and slow) emanates from a unique ICG pool in a different environment within the cell membrane and that each component is also composed of two constituents (ICG-monomeric and ICG-aggregated). We propose the existence of different voltage-sensitive mechanisms for the components: (I) electrochromism and field-induced reorientation for the fast component; and (II) field-induced dye squeezing that amplifies intermolecular interactions, resulting in self-quenching of the dye fluorescence, for the slow component.
Collapse
Affiliation(s)
- Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mantė Almanaitytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Navalinskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Benetis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
25
|
Kulkarni RU, Yin H, Pourmandi N, James F, Adil MM, Schaffer DV, Wang Y, Miller EW. A Rationally Designed, General Strategy for Membrane Orientation of Photoinduced Electron Transfer-Based Voltage-Sensitive Dyes. ACS Chem Biol 2017; 12:407-413. [PMID: 28004909 DOI: 10.1021/acschembio.6b00981] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Voltage imaging with fluorescent dyes offers promise for interrogating the complex roles of membrane potential in coordinating the activity of neurons in the brain. Yet, low sensitivity often limits the broad applicability of optical voltage indicators. In this paper, we use molecular dynamics (MD) simulations to guide the design of new, ultrasensitive fluorescent voltage indicators that use photoinduced electron transfer (PeT) as a voltage-sensing switch. MD simulations predict an approximately 16% increase in voltage sensitivity resulting purely from improved alignment of dye with the membrane. We confirm this theoretical finding by synthesizing 9 new voltage-sensitive (VoltageFluor, or VF) dyes and establishing that all of them display the expected improvement of approximately 19%. This synergistic outworking of theory and experiment enabled computational and theoretical estimation of VF dye orientation in lipid bilayers and has yielded the most sensitive PeT-based VF dye to date. We use this new voltage indicator to monitor voltage spikes in neurons from rat hippocampus and human pluripotent-stem-cell-derived dopaminergic neurons.
Collapse
Affiliation(s)
| | - Hang Yin
- Shenzhen
Research Institute and Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | | | | - Yi Wang
- Shenzhen
Research Institute and Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
26
|
Martišienė I, Mačianskienė R, Treinys R, Navalinskas A, Almanaitytė M, Karčiauskas D, Kučinskas A, Grigalevičiūtė R, Zigmantaitė V, Benetis R, Jurevičius J. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart. Biophys J 2017; 110:723-732. [PMID: 26840736 DOI: 10.1016/j.bpj.2015.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022] Open
Abstract
So far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity. Optical mapping experiments were performed on Langendorff rabbit hearts stained with ICG and perfused with electromechanical uncouplers. The residual contraction force and electrical action potentials were recorded simultaneously. Our research confirms that ICG is a voltage-sensitive dye with a dual-component (fast and slow) response to membrane potential changes. The fast component of the optical signal (OS) can have opposite polarities in different parts of the fluorescence spectrum. In contrast, the polarity of the slow component remains the same throughout the entire spectrum. Separating the OS into these components revealed two different voltage-sensitivity mechanisms for ICG. The fast component of the OS appears to be electrochromic in nature, whereas the slow component may arise from the redistribution of the dye molecules within or around the membrane. Both components quite accurately track the time of electrical signal propagation, but only the fast component is suitable for estimating the shape and duration of action potentials. Because ICG has voltage-sensitive properties in the entire heart, we suggest that it can be used to monitor cardiac electrical behavior in the clinic.
Collapse
|
27
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
28
|
Wang F, Bélanger E, Paquet ME, Côté DC, De Koninck Y. Probing pain pathways with light. Neuroscience 2016; 338:248-271. [PMID: 27702648 DOI: 10.1016/j.neuroscience.2016.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
We have witnessed an accelerated growth of photonics technologies in recent years to enable not only monitoring the activity of specific neurons, while animals are performing certain types of behavior, but also testing whether specific cells, circuits, and regions are sufficient or necessary for initiating, maintaining, or altering this or that behavior. Compared to other sensory systems, however, such as the visual or olfactory system, photonics applications in pain research are only beginning to emerge. One reason pain studies have lagged behind is that many of the techniques originally developed cannot be directly implemented to study key relay sites within pain pathways, such as the skin, dorsal root ganglia, spinal cord, and brainstem. This is due, in part, to difficulties in accessing these structures with light. Here we review a number of recent advances in design and delivery of light-sensitive molecular probes (sensors and actuators) into pain relay circuits to help decipher their structural and functional organization. We then discuss several challenges that have hampered hardware access to specific structures including light scattering, tissue movement and geometries. We review a number of strategies to circumvent these challenges, by delivering light into, and collecting it from the different key sites to unravel how nociceptive signals are encoded at each level of the neuraxis. We conclude with an outlook on novel imaging modalities for label-free chemical detection and opportunities for multimodal interrogation in vivo. While many challenges remain, these advances offer unprecedented opportunities to bridge cellular approaches with context-relevant behavioral testing, an essential step toward improving translation of basic research findings into clinical applications.
Collapse
Affiliation(s)
- Feng Wang
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
| | - Erik Bélanger
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada
| | - Marie-Eve Paquet
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Département de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
| | - Daniel C Côté
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de physique, de génie physique et d'optique, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
29
|
Deal PE, Kulkarni RU, Al-Abdullatif SH, Miller EW. Isomerically Pure Tetramethylrhodamine Voltage Reporters. J Am Chem Soc 2016; 138:9085-8. [PMID: 27428174 PMCID: PMC5222532 DOI: 10.1021/jacs.6b05672] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores.
Collapse
Affiliation(s)
- Parker E. Deal
- Department of Chemistry, University of California, Berkeley, California, 94720
| | | | | | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California, 94720
- Department of Molecular & Cell Biology, University of California, Berkeley, California, 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, 94720
| |
Collapse
|
30
|
Alvarez-Bustamante JA, Lemeshko VV. Computational models for monitoring the trans-membrane potential with fluorescent probes: the DiSC3(5) case. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:815-830. [DOI: 10.1007/s00249-016-1126-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/15/2023]
|
31
|
Non-uniform distribution of outer hair cell transmembrane potential induced by extracellular electric field. Biophys J 2014; 105:2666-75. [PMID: 24359738 DOI: 10.1016/j.bpj.2013.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 11/21/2022] Open
Abstract
Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the direction of the extracellular electric field (EEF) on isolated OHCs at a low frequency using the fast voltage-sensitive dye ANNINE-6plus. We calibrated the potentiometric sensitivity of the dye by applying known voltage steps to cells by simultaneous whole-cell voltage clamp. The OHC transmembrane potential induced by the EEF is shown to be highly nonuniform along the cell perimeter and strongly dependent on the direction of the electrical field. Unlike in many other cells, the EEF induces a field-direction-dependent intracellular potential in the cylindrical OHC. We predict that without this induced intracellular potential, EEF would not generate somatic electromotility in OHCs. In conjunction with the known heterogeneity of OHC membrane microdomains, voltage-gated ion channels, charge, and capacitance, the EEF-induced nonuniform transmembrane potential measured in this study suggests that the EEF would impact the cochlear amplification and electropermeability of molecules across the cell.
Collapse
|