1
|
Yang H, Xiao G, Wang D, Xiong T, Wang J, Jing X, Xiong B, Xie J, Liu B, She Q. Inhibition of HMOX1 alleviates diabetic cardiomyopathy by targeting ferroptosis. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40235314 DOI: 10.3724/abbs.2024232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is an important complication of chronic diabetes mellitus. However, its pathologic process and pathogenesis have not been fully elucidated. This study aims to investigate the role of ferroptosis in DCM and clarify the effect of heme oxygenase-1 (HMOX1) on DCM by targeting ferroptosis. In vivo, an animal model of DCM is established by subjecting mice to a high-fat diet (HFD) combined with low-dose streptozotocin (STZ) injection. We induce an in vitro DCM model by exposing H9C2 cells to high glucose and palmitic acid. Transcriptome sequencing reveals that the differentially expressed genes (DEGs) are enriched primarily in fatty acid metabolism and mitochondrial fatty acid β-oxidation, which are closely related to ferroptosis. The experimental results show that the diabetic microenvironment induces ferroptosis both in vivo and in vitro. Western blot analysis reveals the decreased expressions of the antioxidant proteins GPX4, SLC7A11 and ferritin in the DCM group. However, qPCR demonstrates the elevated expressions of the ferroptosis markers PTGS2 and ACSL4. Biochemical indicators further support the occurrence of ferroptosis, with increased levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH), along with decreased level of glutathione (GSH). In vitro, intervention with high glucose and palmitic acid in H9C2 cells results in ferroptosis, which is reversed by ferrostatin-1 (Fer-1). Results show the elevated expression of HMOX1 in DCM. Moreover, knockdown of HMOX1 ameliorates ferroptosis, thereby alleviating diabetic cardiomyopathy by reducing cardiac fibrosis and improving cardiac function. Our study elucidates the role of HMXO1 in DCM pathogenesis and provides a potential therapeutic strategy for clinical treatment.
Collapse
Affiliation(s)
- Huiping Yang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Gongyi Xiao
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Department of Orthopedic Surgery, Chonggang General Hospital, Chongqing 400000, China
| | - Dinghui Wang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tianhua Xiong
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jing Wang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaodong Jing
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Bingquan Xiong
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Junmei Xie
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Bin Liu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiang She
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Kong Y, Tai Y, Chen B, Li C, Chen H, Shi L. Serum potassium level is associated with serum neurofilament light chain in American adult population: a cross-sectional analysis of the 2013-2014 National Health and Nutrition Examination Survey. Front Aging Neurosci 2025; 17:1511881. [PMID: 40171384 PMCID: PMC11959064 DOI: 10.3389/fnagi.2025.1511881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Objective Serum neurofilament light chain (sNfL) is one of the most sensitive diagnostic biomarkers for a variety of neurodegenerative pathologies. Potassium, an essential electrolyte, plays a critical role in maintaining neuronal health and the proper functioning of the central nervous system (CNS). The aim of our research was to investigate the association between serum potassium level and sNfL levels. Methods Based on the National Health and Nutrition Examination Survey (NHANES) database, we analyzed data from the 2013 to 2014 NHANES. Serum potassium concentrations were measured via ion-selective electrode (ISE) technology. The levels of sNfL were measured using a sensitive immunoassay developed by Siemens Healthineers. Our researcher analyzed the association between potassium level in serum and sNfL in American persons using multivariate logistic regression analysis and smoothed curve fitting. The consistency of these results was examined in various population subgroups. Results A total of 1,670 participants were involved in our research, including 872 women (50.5%) and 798 men (49.5%). The median serum potassium concentration was 4.0 mmol/L and the median sNfL was 12.3 pg/ml. After adjusting for potential confounders in the full model, individuals with higher serum potassium concentrations had higher sNfL levels (Q3 vs. Q1, β = 2.86, 95% CI: 0.33-5.39, P = 0.027). There was a non-linear positive dose-response association between higher serum potassium concentrations and sNfL levels (P for non-linearity = 0.028). Based on the results of stratified analysis, the relationship was stronger in the low- and middle-income group, non-drinking and non-physical activity participants, and participants with hypertension and diabetes. Interpretation In the cohort of American adults, a greater serum potassium concentration was linked to a higher sNfL. However, causality still needs to be further verified.
Collapse
Affiliation(s)
- Yingming Kong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Bin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Chunzheng Li
- Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Hao Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liang Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Basic Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Yan J, Wang Y, Song X, Yan X, Zhao Y, Yu L, He Z. The Advancement of Gas-Generating Nanoplatforms in Biomedical Fields: Current Frontiers and Future Perspectives. SMALL METHODS 2022; 6:e2200139. [PMID: 35587774 DOI: 10.1002/smtd.202200139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Diverse gases (NO, CO, H2 S, H2 , etc.) have been widely applied in the medical intervention of various diseases, including cancer, cardiovascular disease, ischemia-reperfusion injury, bacterial infection, etc., attributing to their inherent biomedical activities. Although many gases have many biomedical activities, their clinical use is still limited due to the rapid and free diffusion behavior of these gases molecules, which may cause potential side effects and/or ineffective treatment. Gas-generating nanoplatforms (GGNs) are effective strategies to address the aforementioned challenges of gas therapy by preventing gas production or release at nonspecific sites, enhancing GGNs accumulation at targeted sites, and controlling gas release in response to exogenous (UV, NIR, US, etc.) or endogenous (H2 O2 , GSH, pH, etc.) stimuli at the lesion site, further maintaining gas concentration within the effective range and achieving the purpose of disease treatment. This review comprehensively summarizes the advancements of "state-of-the-art" GGNs in the recent three years, with emphasis on the composition, structure, preparation process, and gas release mechanism of the nanocarriers. Furthermore, the therapeutic effects and limitations of GGNs in preclinical studies using cell/animal models are discussed. Overall, this review enlightens the further development of this field and promotes the clinical transformation of gas therapy.
Collapse
Affiliation(s)
- Jiahui Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
4
|
Heme Oxygenase-1 in Central Nervous System Malignancies. J Clin Med 2020; 9:jcm9051562. [PMID: 32455831 PMCID: PMC7290325 DOI: 10.3390/jcm9051562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system tumors are the most common pediatric solid tumors and account for 20–25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. The biological effects of HO-1 in tumor cells have been shown to be cell-specific since, in some tumors, its upregulation promotes cell cycle arrest and cellular death, whereas, in other neoplasms, it is associated with tumor survival and progression. This review focuses on the role of HO-1 in central nervous system malignancies and the possibility of exploiting such a target to improve the outcome of well-established therapeutic regimens. Finally, several studies show that HO-1 overexpression is involved in the development and resistance of brain tumors to chemotherapy and radiotherapy, suggesting the use of HO-1 as an innovative therapeutic target to overcome drug resistance. The following keywords were used to search the literature related to this topic: nuclear factor erythroid 2 p45-related factor 2, heme oxygenase, neuroblastoma, medulloblastoma, meningioma, astrocytoma, oligodendroglioma, glioblastoma multiforme, and gliomas.
Collapse
|
5
|
Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int J Oncol 2020; 57:445-455. [PMID: 32626932 PMCID: PMC7307592 DOI: 10.3892/ijo.2020.5065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Curcumin displays anticancer properties; however, some issues with the drug delivery mode limit its therapeutic use. Although reformulation and derivatization of curcumin have improved its bioavailability, curcumin derivatives may not retain the same anticancer properties as the parent compound. The present study investigated the anticancer properties of two curcumin complexes, the iron‑curcumin [Fe(Cur)3] and boron‑curcumin [B(Cur)2] complexes, in the MDA‑MB‑231 breast cancer cell line. The cellular localization of curcumin, B(Cur)2 and Fe(Cur)3 was determined by fluorescence microscopy. Cell proliferation, migration and invasion were also analysed. Furthermore, apoptosis‑associated proteins were detected by using a proteome profiler array, and ion channel gene expression was analysed by reverse transcription‑quantitative PCR. The results demonstrated that the three compounds were localized in the perinuclear and cytoplasmic regions of the cell, and displayed cytotoxicity with IC50 values of 25, 35 and 8 µM for curcumin, B(Cur)2 and Fe(Cur)3, respectively. In addition, the three compounds inhibited cell invasion, whereas only curcumin and B(Cur)2 inhibited cell migration. Furthermore, cell exposure to curcumin resulted in an increase in the relative expression of the two key proapoptotic proteins, cytochrome c and cleaved caspase‑3, as well as the antiapoptotic protein haem oxygenase‑1. In addition, curcumin increased the expression levels of the voltage‑gated potassium channels Kv2.1 and Kv3.2. Similarly, the expression levels of the chloride channel bestrophin‑1 and the calcium channel coding gene calcium voltage‑gated channel auxiliary subunit γ4 were increased following exposure to curcumin. Taken together, these results indicated that Fe(Cur)3 and B(Cur)2 may display similar anticancer properties as curcumin, suggesting that chemical complexation may be considered as a strategy for improving the potency of curcumin in the treatment of breast cancer.
Collapse
|
6
|
Wu MS, Chien CC, Chang J, Chen YC. Pro-apoptotic effect of haem oxygenase-1 in human colorectal carcinoma cells via endoplasmic reticular stress. J Cell Mol Med 2019; 23:5692-5704. [PMID: 31199053 PMCID: PMC6653387 DOI: 10.1111/jcmm.14482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Several biological effects of haem oxygenase (HO)‐1, including anti‐inflammatory, antiapoptotic and antioxidative properties were reported; however, the role of HO‐1 in apoptosis is still unclear. In the presence of stimulation by cobalt protoporphyrin (CoPP), an HO‐1 inducer, apoptotic characteristics were observed, including DNA laddering, hypodiploid cells, and cleavages of caspase (Casp)‐3 and poly(ADP) ribose polymerase (PARP) proteins in human colon carcinoma COLO205, HCT‐15, LOVO and HT‐29 cells in serum‐free (SF) conditions with increased HO‐1, but not heat shock protein 70 (HSP70) or HSP90. The addition of 10% foetal bovine serum (FBS) or 1% bovine serum albumin accordingly inhibited CoPP‐induced apoptosis and HO‐1 protein expression in human colon cancer cells. CoPP‐induced apoptosis of colon cancer cells was prevented by the addition of the pan‐caspase inhibitor, Z‐VAD‐FMK (VAD), and the Casp‐3 inhibitor, Z‐DEVD‐FMK (DEVD). N‐Acetyl cysteine inhibited reactive oxygen species‐generated H2O2‐induced cell death with reduced intracellular peroxide production, but did not affect CoPP‐induced apoptosis in human colorectal carcinoma (CRC) cells. Two CoPP analogs, ferric protoporphyrin and tin protoporphyrin, did not affect the viability of human CRC cells or HO‐1 expression by those cells, and knockdown of HO‐1 protein expression by HO‐1 small interfering (si)RNA reversed the cytotoxic effect elicited by CoPP. Furthermore, the carbon monoxide (CO) donor, CORM, but not FeSO4 or biliverdin, induced DNA ladders, and cleavage of Casp‐3 and PARP proteins in human CRC cells. Increased phosphorylated levels of the endoplasmic reticular (ER) stress proteins, protein kinase R‐like ER kinase (PERK), and eukaryotic initiation factor 2α (eIF2α) by CORM and CoPP were identified, and the addition of the PERK inhibitor, GSK2606414, inhibited CORM‐ and CoPP‐induced apoptosis. Increased GRP78 level and formation of the HO‐1/GRP78 complex were detected in CORM‐ and CoPP‐treated human CRC cells. A pro‐apoptotic role of HO‐1 against the viability of human CRC cells via induction of CO and ER stress was firstly demonstrated herein.
Collapse
Affiliation(s)
- Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Whiten SR, Eggleston H, Adelman ZN. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods. Front Physiol 2018; 8:1134. [PMID: 29387018 PMCID: PMC5776124 DOI: 10.3389/fphys.2017.01134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests.
Collapse
Affiliation(s)
- Shavonn R Whiten
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Heather Eggleston
- Genetics Graduate Program, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Ryter SW, Ma KC, Choi AMK. Carbon monoxide in lung cell physiology and disease. Am J Physiol Cell Physiol 2017; 314:C211-C227. [PMID: 29118026 DOI: 10.1152/ajpcell.00022.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carbon monoxide (CO) is an endogenously produced gas that has gained recognition as a biological signal transduction effector with properties similar, but not identical, to that of nitric oxide (NO). CO, which binds primarily to heme iron, may activate the hemoprotein guanylate cyclase, although with lower potency than NO. Furthermore, CO can modulate the activities of several cellular signaling molecules such as p38 MAPK, ERK1/2, JNK, Akt, NF-κB, and others. Emerging studies suggest that mitochondria, the energy-generating organelle of cells, represent a key target of CO action in eukaryotes. Dose-dependent modulation of mitochondrial function by CO can result in alteration of mitochondrial membrane potential, mitochondrial reactive oxygen species production, release of proapoptotic and proinflammatory mediators, as well as the inhibition of respiration at high concentration. CO, through modulation of signaling pathways, can impact key biological processes including autophagy, mitochondrial biogenesis, programmed cell death (apoptosis), cellular proliferation, inflammation, and innate immune responses. Inhaled CO is widely known as an inhalation hazard due to its rapid complexation with hemoglobin, resulting in impaired oxygen delivery to tissues and hypoxemia. Despite systemic and cellular toxicity at high concentrations, CO has demonstrated cyto- and tissue-protective effects at low concentration in animal models of organ injury and disease. These include models of acute lung injury (e.g., hyperoxia, hypoxia, ischemia-reperfusion, mechanical ventilation, bleomycin) and sepsis. The success of CO as a candidate therapeutic in preclinical models suggests potential clinical application in inflammatory and proliferative disorders, which is currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York
| | - Kevin C Ma
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York.,New York Presbyterian Hospital , New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York.,New York Presbyterian Hospital , New York, New York
| |
Collapse
|
9
|
Bódi N, Szalai Z, Chandrakumar L, Bagyánszki M. Region-dependent effects of diabetes and insulin-replacement on neuronal nitric oxide synthase- and heme oxygenase-immunoreactive submucous neurons. World J Gastroenterol 2017; 23:7359-7368. [PMID: 29151690 PMCID: PMC5685842 DOI: 10.3748/wjg.v23.i41.7359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons.
METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex- and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase (nNOS) and HuC/D, heme oxygenase (HO) 1 and peripherin, as well as HO2 and peripherin. The density of nNOS-, HO1- and HO2-immunoreactive (IR) neurons was determined as a percentage of the total number of submucous neurons.
RESULTS The total number of submucous neurons and the proportion of nNOS-, HO1- and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2- and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1- and HO2-IR submucous neurons was robust in the colon of controls (38.4%-50.8%), whereas it was significantly lower in the small intestinal segments (0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals.
CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of nNOS-, HO1- and HO2-IR submucous neuronal density in the distal parts of the gut.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Lalitha Chandrakumar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
10
|
Udensi UK, Tchounwou PB. Potassium Homeostasis, Oxidative Stress, and Human Disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PHYSIOLOGY 2017; 4:111-122. [PMID: 29218312 PMCID: PMC5716641 DOI: 10.4103/ijcep.ijcep_43_17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Potassium is the most abundant cation in the intracellular fluid and it plays a vital role in the maintenance of normal cell functions. Thus, potassium homeostasis across the cell membrane, is very critical because a tilt in this balance can result in different diseases that could be life threatening. Both Oxidative stress (OS) and potassium imbalance can cause life threatening health conditions. OS and abnormalities in potassium channel have been reported in neurodegenerative diseases. This review highlights the major factors involved in potassium homeostasis (dietary, hormonal, genetic, and physiologic influences), and discusses the major diseases and abnormalities associated with potassium imbalance including hypokalemia, hyperkalemia, hypertension, chronic kidney disease, and Gordon's syndrome, Bartter syndrome, and Gitelman syndrome.
Collapse
Affiliation(s)
- Udensi K. Udensi
- Molecular Toxicology Research laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi, MS 39217, USA
- Department of Pathology & Laboratory Medicine, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way (S-113), Seattle, WA 98108, USA
| | - Paul B. Tchounwou
- Molecular Toxicology Research laboratory, NIH RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi, MS 39217, USA
| |
Collapse
|