1
|
Li F, Cui S. Knockdown of C3aR alleviates age-related bone loss via activation of YAP1/β-catenin signaling. J Biol Chem 2025; 301:108500. [PMID: 40216253 DOI: 10.1016/j.jbc.2025.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/13/2025] [Accepted: 03/30/2025] [Indexed: 05/12/2025] Open
Abstract
The complement system plays an important role in bone growth during physiological development and skeletal homeostasis. However, the specific impact of the complement C3a receptor (C3aR) on age-related bone loss remains unclear. In this study, we found that C3aR expression increased with age and was the same as that of the senescent molecules p53, p21, and p16 in control mice. Knockdown of C3aR reduced the expression of senescence markers and significantly ameliorated bone senescence. Notably, C3aR knockdown in mice effectively reversed age-induced bone loss, which was characterized by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of D-gal-induced senescence, increased expression of C3aR correlated with increased expression of senescence markers such as p53, p21, and p16. Treatment with a C3aR antagonist (JR14a) successfully attenuated the expression of these markers of cellular senescence and reduced the proportion of late apoptotic cells. Mechanistically, JR14a treatment mitigated D-gal-mediated inhibition of osteoblastic differentiation in preosteoblasts through activation of the YAP1/β-catenin signaling pathway. In the D-gal-induced aging mouse model, treatment with JR14a ameliorates bone microarchitecture and bone loss. In summary, these studies revealed a role for C3aR in regulating bone homeostasis, suggesting that targeting C3aR may be a promising therapeutic strategy for the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Fangyu Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Cui
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Meng Q, Wang Y, Yuan T, Su Y, Li Z, Sun S. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. GENE REPORTS 2023; 33:101833. [DOI: 10.1016/j.genrep.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Rehage E, Sowislok A, Busch A, Papaeleftheriou E, Jansen M, Jäger M. Surgical Site-Released Tissue Is Potent to Generate Bone onto TCP and PCL-TCP Scaffolds In Vitro. Int J Mol Sci 2023; 24:15877. [PMID: 37958857 PMCID: PMC10647844 DOI: 10.3390/ijms242115877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
There is evidence that surgical site tissue (SSRT) released during orthopedic surgery has a strong mesenchymal regenerative potential. Some data also suggest that this tissue may activate synthetic or natural bone substitute materials and can thus upgrade its osteopromoting properties. In this comparative in vitro study, we investigate the composition of SSRT during total hip replacement (n = 20) harvested using a surgical suction handle. In addition, the osteopromoting effect of the cells isolated from SSRT is elucidated when incubated with porous beta-tricalcium phosphate (β-TCP) or 80% medical-grade poly-ε-caprolactone (PCL)/20% TCP composite material. We identified multiple growth factors and cytokines with significantly higher levels of PDGF and VEGF in SSRT compared to peripheral blood. The overall number of MSC was 0.09 ± 0.12‱ per gram of SSRT. A three-lineage specific differentiation was possible in all cases. PCL-TCP cultures showed a higher cell density and cell viability compared to TCP after 6 weeks in vitro. Moreover, PCL-TCP cultures showed a higher osteocalcin expression but no significant differences in osteopontin and collagen I synthesis. We could demonstrate the high regenerative potential from SSRT harvested under vacuum in a PMMA filter device. The in vitro data suggest advantages in cytocompatibility for the PCL-TCP composite compared to TCP alone.
Collapse
Affiliation(s)
- Emely Rehage
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
| | - Andrea Sowislok
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
| | - André Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, 45355 Essen, Germany
| | - Eleftherios Papaeleftheriou
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Mülheim an der Ruhr, 45468 Mülheim an der Ruhr, Germany;
| | - Melissa Jansen
- Institute of Cognitive Science, University of Osnabrück, 49090 Osnabrück, Germany;
| | - Marcus Jäger
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, 45355 Essen, Germany
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Mülheim an der Ruhr, 45468 Mülheim an der Ruhr, Germany;
| |
Collapse
|
4
|
Functional Loss of Terminal Complement Complex Protects Rabbits from Injury-Induced Osteoarthritis on Structural and Cellular Level. Biomolecules 2023; 13:biom13020216. [PMID: 36830586 PMCID: PMC9953363 DOI: 10.3390/biom13020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The terminal complement complex (TCC) has been described as a potential driver in the pathogenesis of posttraumatic osteoarthritis (PTOA). However, sublytic TCC deposition might also play a crucial role in bone development and regeneration. Therefore, we elucidated the effects of TCC on joint-related tissues using a rabbit PTOA model. In brief, a C6-deficient rabbit breed was characterized on genetic, protein, and functional levels. Anterior cruciate ligament transection (ACLT) was performed in C6-deficient (C6-/-) and C6-sufficient (C6+/-) rabbits. After eight weeks, the progression of PTOA was determined histologically. Moreover, the structure of the subchondral bone was evaluated by µCT analysis. C6 deficiency could be attributed to a homozygous 3.6 kb deletion within the C6 gene and subsequent loss of the C5b binding site. Serum from C6-/- animals revealed no hemolytic activity. After ACLT surgery, joints of C6-/- rabbits exhibited significantly lower OA scores, including reduced cartilage damage, hypocellularity, cluster formation, and osteophyte number, as well as lower chondrocyte apoptosis rates and synovial prostaglandin E2 levels. Moreover, ACLT surgery significantly decreased the trabecular number in the subchondral bone of C6-/- rabbits. Overall, the absence of TCC protected from injury-induced OA progression but had minor effects on the micro-structure of the subchondral bone.
Collapse
|
5
|
Pharmacological Management of Atypical Hemolytic Uremic Syndrome in Pediatric Patients: Current and Future. Paediatr Drugs 2023; 25:193-202. [PMID: 36637720 PMCID: PMC9839393 DOI: 10.1007/s40272-022-00555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Atypical hemolytic uremic syndrome is a thrombotic microangiopathy characterized by hemolysis, thrombocytopenia, and acute kidney injury, usually caused by alternative complement system overactivation due to pathogenic genetic variants or antibodies to components or regulatory factors in this pathway. Previously, a lack of effective treatment for this condition was associated with mortality, end-stage kidney disease, and the risk of disease recurrence after kidney transplantation. Plasma therapy has been used for atypical hemolytic uremic syndrome treatment with inconsistent results. Complement-blocking treatment changed the outcome and prognosis of patients with atypical hemolytic uremic syndrome. Early administration of eculizumab, a monoclonal C5 antibody, leads to improvements in hematologic, kidney, and systemic manifestations in patients with atypical hemolytic uremic syndrome, even with apparent dialysis dependency. Pre- and post-transplant use of eculizumab is effective in the prevention of atypical hemolytic uremic syndrome recurrence. Evidence on eculizumab use in secondary hemolytic uremic syndrome cases is controversial. Recent data favor the restrictive use of eculizumab in carefully selected atypical hemolytic uremic syndrome cases, but close monitoring for relapse after drug discontinuation is emphasized. Prophylaxis for meningococcal infection is important. The long-acting C5 monoclonal antibody ravulizumab is now approved for atypical hemolytic uremic syndrome treatment, enabling a reduction in the dosing frequency and improving the quality of life in patients with atypical hemolytic uremic syndrome. New strategies for additional and novel complement blockage medications in atypical hemolytic uremic syndrome are under investigation.
Collapse
|
6
|
Kumar S, Bhagia G, Kaae J. A Rare Case of Atypical Hemolytic Uremia Syndrome Triggered by Influenza Vaccination. Cureus 2022; 14:e23577. [PMID: 35494971 PMCID: PMC9045680 DOI: 10.7759/cureus.23577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) occurs in patients with defective alternative complement pathways, making them susceptible to thrombotic microangiopathy (thrombocytopenia, intravascular hemolysis, and renal failure), and is usually triggered by infectious agents. Influenza and Streptococcus pneumonia are known triggers for aHUS. However, influenza vaccination triggering aHUS is rarely reported. We present a 30-year-old male who presented with chills, abdominal discomfort, and night sweats after receiving the influenza vaccine. The patient had thrombocytopenia, elevated creatinine, blood urea nitrogen, liver enzymes, and bilirubin with schistocytes with peripheral smear. ADAMTS13 activity was normal so the patient was diagnosed with aHUS. The patient improved with eculizumab and was ultimately found to have a mutation in CD46, which made him susceptible to aHUS. This case shows patients with dysregulated alternative complement pathways may be predisposed to develop aHUS after receiving influenza vaccination.
Collapse
|
7
|
Fischer V, Ragipoglu D, Diedrich J, Steppe L, Dudeck A, Schütze K, Kalbitz M, Gebhard F, Haffner-Luntzer M, Ignatius A. Mast Cells Trigger Disturbed Bone Healing in Osteoporotic Mice. J Bone Miner Res 2022; 37:137-151. [PMID: 34633111 DOI: 10.1002/jbmr.4455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Mast cells are important tissue-resident sensor and effector immune cells but also play a major role in osteoporosis development. Mast cells are increased in numbers in the bone marrow of postmenopausal osteoporotic patients, and mast cell-deficient mice are protected from ovariectomy (OVX)-induced bone loss. In this study, we showed that mast cell-deficient Mcpt5-Cre R-DTA mice were protected from OVX-induced disturbed fracture healing, indicating a critical role for mast cells in the pathomechanisms of impaired bone repair under estrogen-deficient conditions. We revealed that mast cells trigger the fracture-induced inflammatory response by releasing inflammatory mediators, including interleukin-6, midkine (Mdk), and C-X-C motif chemokine ligand 10 (CXCL10), and promote neutrophil infiltration into the fracture site in OVX mice. Furthermore, mast cells were responsible for reduced osteoblast and increased osteoclast activities in OVX mice callus, as well as increased receptor activator of NF-κB ligand serum levels in OVX mice. Additional in vitro studies with human cells showed that mast cells stimulate osteoclastogenesis by releasing the osteoclastogenic mediators Mdk and CXCL10 in an estrogen-dependent manner, which was mediated via the estrogen receptor alpha on mast cells. In conclusion, mast cells negatively affect the healing of bone fractures under estrogen-deficient conditions. Hence, targeting mast cells might provide a therapeutic strategy to improve disturbed bone repair in postmenopausal osteoporosis. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Johanna Diedrich
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Lena Steppe
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Konrad Schütze
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen-Nürnberg, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
8
|
Transcriptome Analysis of Egg Yolk Sialoglycoprotein on Osteogenic Activity in MC3T3-E1 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of egg yolk sialoglycoprotein (EYG) on osteogenesis in MC3T3-E1 cells were investigated and the DEGs (differentially expressed genes) were explored by transcriptome analysis. The results found that EYG effectively increased cell proliferation, enhanced ALP activity, promoted the secretion of extracellular matrix protein COL-I and OCN, enhanced bone mineralization activity, exhibiting good osteogenic activity. Further study of the mechanism was explored through transcriptome analysis. Transcriptome analysis showed that 123 DEGs were triggered by EYG, of which 78 genes were downregulated and 45 genes were upregulated. GO (gene ontology) analysis showed that EYG mainly caused differences in gene expression of biological processes and cell composition categories in the top 30 most enriched items. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that EYG inhibited inflammatory factors and downregulated inflammation-related pathways. The results also showed EYG regulated such genes as COL2A1, COL4A1 and COL4A2 to up-regulate pathways including ECM–receptor interaction, focal adhesion and protein digestion and absorption, enhancing the proliferation and differentiation of osteoblasts. Gene expression of COL-I, Runx2, BMP2 and β-catenin was determined by qRT-PCR for verification, which found that EYG significantly increased COL-I, Runx2, BMP2 and β-catenin gene expression, suggesting that BMP-2 mediated osteogenesis pathway was activated.
Collapse
|
9
|
Herrmann M, Diederichs S, Melnik S, Riegger J, Trivanović D, Li S, Jenei-Lanzl Z, Brenner RE, Huber-Lang M, Zaucke F, Schildberg FA, Grässel S. Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration. Front Bioeng Biotechnol 2021; 8:624096. [PMID: 33553127 PMCID: PMC7855463 DOI: 10.3389/fbioe.2020.624096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.
Collapse
Affiliation(s)
- Marietta Herrmann
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svitlana Melnik
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Drenka Trivanović
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Shushan Li
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
The Immune Cell Landscape in Different Anatomical Structures of Knee in Osteoarthritis: A Gene Expression-Based Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9647072. [PMID: 32258161 PMCID: PMC7106908 DOI: 10.1155/2020/9647072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/10/2019] [Accepted: 01/04/2020] [Indexed: 01/10/2023]
Abstract
Background Immunological mechanisms play a vital role in the pathogenesis of knee osteoarthritis (KOA). Moreover, the immune phenotype is a relevant prognostic factor in various immune-related diseases. In this study, we used CIBERSORT for deconvolution of global gene expression data to define the immune cell landscape of different structures of knee in osteoarthritis. Methods and Findings. By applying CIBERSORT, we assessed the relative proportions of immune cells in 76 samples of knee cartilage, 146 samples of knee synovial tissue, 40 samples of meniscus, and 50 samples of knee subchondral bone. Enumeration and activation status of 22 immune cell subtypes were provided by the obtained immune cell profiles. In synovial tissues, the differences in proportions of plasma cells, M1 macrophages, M2 macrophages, activated dendritic cells, resting mast cells, and eosinophils between normal tissues and osteoarthritic tissues were statistically significant (P < 0.05). The area under the curve was relatively large in resting mast cells, dendritic cells, and M2 macrophages in receiver operating characteristic analyses. In subchondral bones, the differences in proportions of resting master cells and neutrophils between normal tissues and osteoarthritic tissues were statistically significant (P < 0.05). In subchondral bones, the proportions of immune cells, from the principle component analyses, displayed distinct group-bias clustering. Resting mast cells and T cell CD8 were the major component of first component. Moreover, we revealed the potential interaction between immune cells. There was almost no infiltration of immune cells in the meniscus and cartilage of the knee joint. Conclusions The immune cell composition in KOA differed substantially from that of healthy joint tissue, while it also differed in different anatomical structures of the knee. Meanwhile, activated mast cells were mainly associated with high immune cell infiltration in OA. Furthermore, we speculate M2 macrophages in synovium and mast cells in subchondral bone may play an important role in the pathogenesis of OA.
Collapse
|
11
|
Hemorrhagic shock induces renal complement activation. Eur J Trauma Emerg Surg 2019; 47:373-380. [PMID: 31309238 DOI: 10.1007/s00068-019-01187-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Complement is activated in hemorrhagic shock and protective effects by specific complement inhibition were shown. However, it remains unclear if complement activation contributes to the local tissue damage and organ failure. Zonulin is known to activate complement and affect organ failure. Therefore, local and systemic complement activation during hemorrhagic shock and its consequences on zonulin were examined. METHODS Porcine hemorrhagic shock (n = 9) was initiated with mean arterial blood pressure maintained constant for 4 h before retransfusion. Before, 4 h after hemorrhage and 12 and 22 h after resuscitation, central and renal blood samples were drawn. Analysis included HMGB-1, C3a, and zonulin (blood and kidney homogenisates) as well as terminal complement complex (TCC) and CH50 (blood). Organ samples were taken for histological and immunohistochemical analyses (C3c). RESULTS HMGB-1 was significantly elevated in plasma 4 h after hemorrhagic shock and in homogenized kidneys. TCC after 12 h was significantly elevated centrally, while renal levels were not altered. In contrast, CH50 showed diminished renal values, while normal central levels were observed. Local complement activation was observed with enhanced C3c deposition in kidneys. Zonulin showed significantly diminished levels at 12 and 22 h after hemorrhagic shock (central and renal) and significantly correlated with levels of CH50 and neutrophil gelatinase-associated lipocalin (NGAL). CONCLUSION The more pronounced complement activation centrally might indicate consumption of complement products in kidney tissue, which is underlined by C3c staining. Together with diminished levels of zonulin in both systemic and local samples, results could indicate the involvement of complement as well as zonulin in acute kidney failure.
Collapse
|
12
|
Satyam A, Graef ER, Lapchak PH, Tsokos MG, Dalle Lucca JJ, Tsokos GC. Complement and coagulation cascades in trauma. Acute Med Surg 2019; 6:329-335. [PMID: 31592318 PMCID: PMC6773636 DOI: 10.1002/ams2.426] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023] Open
Abstract
Trauma remains a major cause of death throughout the world, especially for patients younger than 45 years. Due to rapid advances in clinical management, both in the acute and prehospital settings, trauma patients survive devastating injuries at unprecedented rates. However, these patients can often face life threatening complications that stem from the robust innate immune response induced by severe hemorrhage, leading to further tissue injury rather than repair. The complement and coagulation cascades are key mediators in this disordered reaction, which includes the development of trauma‐induced coagulopathy. There is increasing evidence that cross‐talk between these two pathways allows rapid amplification of their otherwise targeted responses and contributes to overwhelming and prolonged systemic inflammation. In this article, we summarize the initial steps of innate immune response to trauma and review the complex complement and coagulation cascades, as well as how they interact with each other. Despite progress in understanding these cascades, effective therapeutic targets have yet to be found and further research is needed both to improve survival rates as well as decrease associated morbidity.
Collapse
Affiliation(s)
- Abhigyan Satyam
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| | - Elizabeth R Graef
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| | - Peter H Lapchak
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| | - Maria G Tsokos
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| | | | - George C Tsokos
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston Massachusetts
| |
Collapse
|
13
|
Alexander JJ, Sankaran JS, Seldeen KL, Thiyagarajan R, Jacob A, Quigg RJ, Troen BR, Judex S. Absence of complement factor H alters bone architecture and dynamics. Immunobiology 2018; 223:761-771. [DOI: 10.1016/j.imbio.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/22/2018] [Accepted: 07/28/2018] [Indexed: 01/03/2023]
|
14
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, Uppal N, Shoffstall A, Ustin J, Lavik E. Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 2018; 29:2436-2447. [PMID: 29965731 DOI: 10.1021/acs.bioconjchem.8b00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bleeding from traumatic injury is the leading cause of death for young people across the world, but interventions are lacking. While many agents have shown promise in small animal models, translating the work to large animal models has been exceptionally difficult in great part because of infusion-associated complement activation to nanomaterials that leads to cardiopulmonary complications. Unfortunately, this reaction is seen in at least 10% of the population. We developed intravenously infusible hemostatic nanoparticles that were effective in stopping bleeding and improving survival in rodent models of trauma. To translate this work, we developed a porcine liver injury model. Infusion of the first generation of hemostatic nanoparticles and controls 5 min after injury led to massive vasodilation and exsanguination even at extremely low doses. In naïve animals, the physiological changes were consistent with a complement-associated infusion reaction. By tailoring the zeta potential, we were able to engineer a second generation of hemostatic nanoparticles and controls that did not exhibit the complement response at low and moderate doses but did at the highest doses. These second-generation nanoparticles led to cessation of bleeding within 10 min of administration even though some signs of vasodilation were still seen. While the complement response is still a challenge, this work is extremely encouraging in that it demonstrates that when the infusion-associated complement response is managed, hemostatic nanoparticles are capable of rapidly stopping bleeding in a large animal model of trauma.
Collapse
Affiliation(s)
- Chimdiya Onwukwe
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Nuzhat Maisha
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Mark Holland
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Matt Varley
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Rebecca Groynom
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - DaShawn Hickman
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Nishant Uppal
- Harvard Medical School , 25 Shattuck Street , Boston , Massachusetts 02115 , United States
| | - Andrew Shoffstall
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey Ustin
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Erin Lavik
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| |
Collapse
|
17
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
18
|
Kroner J, Kovtun A, Kemmler J, Messmann JJ, Strauss G, Seitz S, Schinke T, Amling M, Kotrba J, Froebel J, Dudeck J, Dudeck A, Ignatius A. Mast Cells Are Critical Regulators of Bone Fracture-Induced Inflammation and Osteoclast Formation and Activity. J Bone Miner Res 2017; 32:2431-2444. [PMID: 28777474 DOI: 10.1002/jbmr.3234] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022]
Abstract
Mast cells, important sensor and effector cells of the immune system, may influence bone metabolism as their number is increased in osteoporotic patients. They are also present during bone fracture healing with currently unknown functions. Using a novel c-Kit-independent mouse model of mast cell deficiency, we demonstrated that mast cells did not affect physiological bone turnover. However, they triggered local and systemic inflammation after fracture by inducing release of inflammatory mediators and the recruitment of innate immune cells. In later healing stages, mast cells accumulated and regulated osteoclast activity to remodel the bony fracture callus. Furthermore, they were essential to induce osteoclast formation after ovariectomy. Additional in vitro studies revealed that they promote osteoclastogenesis via granular mediators, mainly histamine. In conclusion, mast cells are redundant in physiologic bone turnover but exert crucial functions after challenging the system, implicating mast cells as a potential target for treating inflammatory bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jochen Kroner
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| | - Julia Kemmler
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| | - Joanna J Messmann
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Seitz
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia Froebel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Institute for Immunology, Medical Faculty, Carl-Gustav Carus, Technical University, Dresden, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE OF THE REVIEW Mounting evidence supports a role of low-grade inflammation in the pathophysiology of osteoarthritis (OA). We review and discuss the role of synovitis, complement activation, cytokines, and immune cell population in OA. RECENT FINDINGS Using newer imaging modalities, synovitis is found in the majority of knees with OA. Complement activation and pro-inflammatory cytokines play a significant role in the development of cartilage destruction and synovitis. Immune cell infiltration of OA synovial tissue by sub-populations of T cells and activated macrophages correlates with OA disease progression and pain. The innate and acquired immune system plays a key role in the low-grade inflammation found associated with OA. Targets of these pathways my hold promise for future disease-modifying osteoarthritis drugs (DMOADs).
Collapse
Affiliation(s)
| | - Adrian Filiberti
- Department of Medicine, University of Oklahoma Health Sciences Center, 975 N.E. 10th St, BRC 256, Oklahoma City, OK, 73104, USA
| | - Syed Ali Husain
- Department of Medicine, University of Oklahoma Health Sciences Center, 975 N.E. 10th St, BRC 256, Oklahoma City, OK, 73104, USA
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, 975 N.E. 10th St, BRC 256, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. MATERIALS 2017; 10:ma10111302. [PMID: 29137166 PMCID: PMC5706249 DOI: 10.3390/ma10111302] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.
Collapse
|
21
|
Abstract
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by intravascular hemolysis, thrombocytopenia, and acute kidney failure. HUS is usually categorized as typical, caused by Shiga toxin-producing Escherichia coli (STEC) infection, as atypical HUS (aHUS), usually caused by uncontrolled complement activation, or as secondary HUS with a coexisting disease. In recent years, a general understanding of the pathogenetic mechanisms driving HUS has increased. Typical HUS (ie, STEC-HUS) follows a gastrointestinal infection with STEC, whereas aHUS is associated primarily with mutations or autoantibodies leading to dysregulated complement activation. Among the 30% to 50% of patients with HUS who have no detectable complement defect, some have either impaired diacylglycerol kinase ε (DGKε) activity, cobalamin C deficiency, or plasminogen deficiency. Some have secondary HUS with a coexisting disease or trigger such as autoimmunity, transplantation, cancer, infection, certain cytotoxic drugs, or pregnancy. The common pathogenetic features in STEC-HUS, aHUS, and secondary HUS are simultaneous damage to endothelial cells, intravascular hemolysis, and activation of platelets leading to a procoagulative state, formation of microthrombi, and tissue damage. In this review, the differences and similarities in the pathogenesis of STEC-HUS, aHUS, and secondary HUS are discussed. Common for the pathogenesis seems to be the vicious cycle of complement activation, endothelial cell damage, platelet activation, and thrombosis. This process can be stopped by therapeutic complement inhibition in most patients with aHUS, but usually not those with a DGKε mutation, and some patients with STEC-HUS or secondary HUS. Therefore, understanding the pathogenesis of the different forms of HUS may prove helpful in clinical practice.
Collapse
|
22
|
Zhang S, Wotzkow C, Bongoni AK, Shaw-Boden J, Siegrist M, Taddeo A, Blank F, Hofstetter W, Rieben R. Role of the plasma cascade systems in ischemia/reperfusion injury of bone. Bone 2017; 97:278-286. [PMID: 28159709 DOI: 10.1016/j.bone.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (I/R) injury has been extensively studied in organs such as heart, brain, liver, kidney, and lung. As a vascularized organ, bone is known to be susceptible to I/R injury too, but the respective mechanisms are not well understood to date. We therefore hypothesized that, similar to other organs, plasma cascade-induced inflammation also plays a role in bone I/R injury. Reperfusion injury in rat tibia was induced by unilateral clamping of the femoral artery and additional use of a tourniquet, while keeping the femoral vein patent to prevent venous congestion. Rats were subjected to 4h ischemia and 24h reperfusion. Deposition of complement fragment C3b/c and fibrin as well as expression of tissue factor (TF), tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1), and E-selectin was detected by immunohistochemistry. In plasma, the levels of high mobility group box1 (HMGB1) were measured by ELISA. The total level of complement in serum was assessed by the CH50 test. Our results show that deposition of C3b/c was significantly increased with respect to healthy controls in cortical bone as well as in marrow of reperfused limbs. C3b/c deposition was also increased in cortical bone, but not in bone marrow, of contralateral limbs. Deposition of fibrin, as well as expression of PAI-1, was significantly increased in bone after ischemia and reperfusion, whereas expression of tPA was reduced. These differences were most prominent in vessels of bone, both in marrow and cortical bone, and both in reperfused and contralateral limbs. However, PAI-1, was only increased in vessels of reperfused cortical bone and there were no significant changes in expression of E-selectin. With respect to solid bone tissue, a significant increase of C3b/c and fibrin deposition was shown in osteocytes, and for fibrin also in the bone matrix, in both contralateral and reperfused cortical bone compared with normal healthy controls. A slight expression of TF was visible in osteocytes of the normal healthy control group, while TF was not present in the experimental groups. Moreover, CH50 values in serum decreased over time and HMGB1 was significantly increased in plasma of animals at the end of reperfusion. We conclude that ischemia and reperfusion of bone leads to activation of the complement and coagulation systems and a downregulation of the fibrinolytic cascade. In the acute phase, a vascular inflammation induced by activation of the plasma cascade systems also occurs in the bone. This is similar to I/R injury of other vascularized organs and tissues.
Collapse
Affiliation(s)
- Shengye Zhang
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Carlos Wotzkow
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Anjan K Bongoni
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | - Jane Shaw-Boden
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Adriano Taddeo
- Department of Clinical Research, University of Bern, Bern, Switzerland; Division of Plastic and Hand Surgery, Inselspital, Bern, Switzerland
| | - Fabian Blank
- Department of Clinical Research, University of Bern, Bern, Switzerland; Pulmonary Medicine, Bern University Hospital, Bern, Switzerland
| | - Willy Hofstetter
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
23
|
Ehrnthaller C, Huber-Lang M, Kovtun A, Rapp AE, Kemmler J, Gebhard F, Ignatius A. C5aR inhibition in the early inflammatory phase does not affect bone regeneration in a model of uneventful fracture healing. Eur J Med Res 2016; 21:42. [PMID: 27784330 PMCID: PMC5081665 DOI: 10.1186/s40001-016-0236-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023] Open
Abstract
Background Recent studies were able to demonstrate involvement of the complement cascade in bone biology. Further studies analyzed the role of complement in traumatic injuries and demonstrated negative effects after excessive systemic activation of the inflammatory response with early abrogation of complement activation after application of a C5aR-antagonist exerting beneficial effects upon bone regeneration. In contrast, own fracture healing experiments with complement-deficient animals implied a crucial role of the complement cascade for sufficient fracture healing. Methods To analyze the effect of a short abrogation of the complement system in the local process of fracture healing, a fracture healing experiment with wild-type mice (C57BL6), femoral osteotomy, consecutive external fixation for 21 days and blockade of the early complement activation (C5aRA) directly after trauma and after 12 h was performed. Control animals received a peptide without any biological effects. After 1–3 days, the inflammatory response was monitored with IL-6 immunostaining, serum analyses of C5a and after 3 days with histological evaluation of PMN. Fracture healing was examined with biomechanical, radiological and histological methods after 21 days. Results While a decrease of the early inflammatory response was seen on day 1 of the C5aRA-treated group regarding immunostaining for IL-6 and after 3 days in the histological evaluation of PMN, no significant differences were demonstrated between both experimental groups after 21 days in the biomechanical, radiological and histological evaluation. Conclusions The present results demonstrate that the short-term inhibition of complement activation immediately after fracture does not significantly affect bone regeneration in an experimental model of regular fracture healing. Whereas other studies demonstrated that the early posttraumatic blockade of the C5aR improves fracture healing in a scenario of combined trauma, the present findings implicate that the same treatment has no effect in uneventful bone healing.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Albert-Einstein Allee 23, 89081, Ulm, Germany.
| | - Markus Huber-Lang
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Albert-Einstein Allee 23, 89081, Ulm, Germany
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anna Elise Rapp
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Julia Kemmler
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Albert-Einstein Allee 23, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Struglics A, Okroj M, Swärd P, Frobell R, Saxne T, Lohmander LS, Blom AM. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res Ther 2016; 18:223. [PMID: 27716448 PMCID: PMC5052889 DOI: 10.1186/s13075-016-1123-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/16/2016] [Indexed: 01/13/2023] Open
Abstract
Background The complement system is suggested to be involved in the pathogenesis of osteoarthritis (OA), and proinflammatory cytokines may play a role in OA development by inducing proteases. The association between complement factors, cytokines and OA has not been investigated. The aim of the present study was to explore the involvement of the complement system after knee trauma and in OA. Methods C4d, C3bBbP and soluble terminal complement complex (sTCC) resulting from complement activation were immunoassayed in synovial fluid from subjects with healthy knees (reference), OA, rheumatoid arthritis (RA; positive control), pyrophosphate arthritis (PPA; positive control) and knee injury; other biomarkers were previously assessed. Magnetic resonance imaging was used to assess joint injuries. Results Compared with levels in the reference group, the median concentrations of C4d, C3bBbP and sTCC in the OA, RA, PPA and knee injury groups were 2- to 34-fold increased (p < 0.001 to p = 0.044). For the knee injury group, the median concentrations of C4d, C3bBbP and sTCC were 5- to 12-fold increased (p < 0.001) at the day of injury; after 3–12 weeks, C3bBbP and sTCC concentrations were similar to reference levels; and C4d was still increased several years after injury. In the 0–12 weeks period after injury, the concentrations of C4d, C3bBbP and sTCC correlated positively with levels of interleukin (IL)-1β, IL-6 and tumour necrosis factor α (rs range 0.232–0.547); none of the measured complement factors correlated with proteolytic fragments of aggrecan or cartilage oligomeric matrix protein. Knees with osteochondral fracture, with or without disrupted cortical bone, had higher concentrations of C4d (p = 0.014, p = 0.004) and sTCC (p = 0.004, p < 0.001) compared with knees without fractures. Conclusions The complement system is activated in OA and after knee injury. Following knee injury, this activation is instant and associated with inflammation as well as with the presence of osteochondral fractures. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1123-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden.
| | - Marcin Okroj
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Faculty of Medicine, Lund, Sweden.,Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Per Swärd
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden
| | - Richard Frobell
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden
| | - Tore Saxne
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Faculty of Medicine, Lund, Sweden
| | - L Stefan Lohmander
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Faculty of Medicine, Lund, Sweden
| |
Collapse
|
25
|
Huber-Lang M, Gebhard F, Schmidt CQ, Palmer A, Denk S, Wiegner R. Complement therapeutic strategies in trauma, hemorrhagic shock and systemic inflammation – closing Pandora’s box? Semin Immunol 2016; 28:278-84. [DOI: 10.1016/j.smim.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
|
26
|
Badendick J, Godkin O, Kohl B, Meier C, Jagielski M, Huang Z, Arens S, Schneider T, Schulze-Tanzil G. Macroscopical, Histological, and In Vitro Characterization of Nonosteoarthritic Versus Osteoarthritic Hip Joint Cartilage. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2016; 9:65-74. [PMID: 27158224 PMCID: PMC4856062 DOI: 10.4137/cmamd.s29844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/21/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) might affect chondrocyte culture characteristics and complement expression. Therefore, this study addressed the interrelation between macroscopical and microscopical structure, complement expression, and chondrocyte culture characteristics in non-OA and OA cartilage. Femoral head cartilage samples harvested from patients with femoral neck fractures (FNFs) and OA were analyzed for macroscopical alterations using an in-house scoring system, graded histologically (Mankin score), and immunolabeled for complement regulatory proteins (CRPs) and receptors. Morphology of monolayer cultured chondrocytes isolated from a subset of samples was assessed. The macroscopical score distinguished the FNF and OA cartilage samples and correlated significantly with the histological results. Chondrocyte phenotype from FNF or OA cartilage differed. Complement receptor C5aR, CRPs CD55 and CD59, and weakly receptor C3AR were detected in the investigated FNF and OA cartilage, except for CD46, which was detected in only two of the five investigated donors. The in-house score also allows inexperienced observers to distinguish non-OA and OA cartilage for experimental purposes.
Collapse
Affiliation(s)
- Jessica Badendick
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Owen Godkin
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Benjamin Kohl
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carola Meier
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michal Jagielski
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zhao Huang
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stephan Arens
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Tobias Schneider
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.; Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Nuremberg, Germany
| | - Gundula Schulze-Tanzil
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.; Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Nuremberg, Germany
| |
Collapse
|