1
|
McGehee DL, Saben JL, Sims CR, Turner D, Thakali KM, Diaz EC, Sobik SR, Edwards T, Krukowski RA, Williams DK, Børsheim E, Andres A. Childhood cardiometabolic risk factors associated with the perinatal environment of the maternal-paternal-child triad. Pediatr Obes 2024; 19:e13162. [PMID: 39183454 PMCID: PMC12071413 DOI: 10.1111/ijpo.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Clustering of cardiometabolic risk factors in childhood significantly increases the risk of atherosclerotic cardiovascular disease later in life. Identification of modifiable parental factors that contribute to offspring cardiometabolic health is critical for the prevention of disease. The objective was to identify factors associated with child cardiometabolic risk factors at age 5 years. METHODS Triads from a longitudinal cohort were recalled at 5 years (n = 68). Dietary intake, anthropometrics, physical activity and serum-based risk factors were collected. Best subset selection, linear and logistic regressions were used to identify triad variables associated with increased risk of cardiometabolic risk factor clustering at age 5 years. RESULTS In this cohort, best subset modelling revealed that increased paternal fat mass, serum low-density lipoproteins and triglycerides, maternal dietary added sugar and being female were associated with increased odds of offspring having two or more cardiometabolic risk factors at age 5 years. CONCLUSIONS Dietary and exercise interventions prior to conception targeting paternal adiposity and dyslipidaemia as well as maternal dietary habits could decrease children's cardiometabolic risk in later life.
Collapse
Affiliation(s)
- Diamond L. McGehee
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Clark R. Sims
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Donald Turner
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
| | - Keshari M. Thakali
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eva C. Diaz
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| | - Sarah R. Sobik
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Timothy Edwards
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| | | | - D. Keith Williams
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| | - Aline Andres
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, Arkansas, 72202
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| |
Collapse
|
2
|
Maurya S, Singh A. Asprosin modulates testicular functions during ageing in mice. Gen Comp Endocrinol 2022; 323-324:114036. [PMID: 35413306 DOI: 10.1016/j.ygcen.2022.114036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023]
Abstract
Ageing is a gradual and multi-factorial process with a significant impact on fertility. The mechanism of declined testicular functions with age remains elusive. Asprosin is a novel fasting-induced gluconeogenic adipokine that regulates glucose homeostasis. However, the expression and potential role of asprosin in testicular functions with age are largely unexplored. So, the current study was aimed to examine the variation in asprosin expression in the mice testis and its correlation with OLFR734 receptor, insulin receptor (IR), GLUT-8 and various steroidogenic markers at different stages of postnatal development. The result demonstrated the highest expression of asprosin in reproductively active mice, which decreased significantly in aged mice testis. Asprosin expression declined simultaneously with declining testosterone production, testicular glucose and expression of OLFR734, IR, GLUT-8 and AR in aged mice testis. This suggests that declining asprosin expression with advancing age may be a causative factor for regressive changes in the testis. Further, the present study also evaluated the in vitro effect of asprosin on testicular functions of aged mice testis. The results showed that asprosin treatment improves testicular functions by stimulating the expression of OLFR734, StAR, 3β-HSD,17β-HSD, IR, GLUT-8, MCT-2&4, PCNA, Bcl2 proteins alongwith increased testosterone, insulin and lactate biosynthesis. Collectively, these findings indicate that a marked decline in asprosin and its receptor OLFR734 expression may result in decreased insulin sensitivity and glucose transport, leading to regressive changes in aged mice testis. Treatment of asprosin can possibly restore the testicular functions of aged mice by augmenting the testosterone, insulin and glucose levels.
Collapse
Affiliation(s)
- Sangeeta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
3
|
Tavares RS, Ramalho-Santos J. The role of sperm and oocyte in fetal programming: Is Lamarck making a comeback? Eur J Clin Invest 2021; 51:e13521. [PMID: 33587759 DOI: 10.1111/eci.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Compelling evidence has shown that parental experiences and age at conception may potentially shape the future health of the next generation(s). Certain factors may affect both the female and, strikingly, the male gametes potentially causing the transmission of acquired traits, which was strongly defended by Jean-Baptiste Lamarck. Neurodevelopmental psychiatric disorders, trinucleotide repeat-associated diseases, cardiovascular pathologies, diabetes, obesity and cancer in the offspring, among others, have now been associated with events occurring at the preconception level. The potential implications of a (trans)generational inheritance of parental disease and exposure effects should be taken into account in counselling and public policy. Further research into how exactly gametes apparently deliver more than DNA to a new generation is warranted.
Collapse
Affiliation(s)
- Renata Santos Tavares
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Swegen A. Maternal recognition of pregnancy in the mare: does it exist and why do we care? Reproduction 2021; 161:R139-R155. [PMID: 33957605 PMCID: PMC8183633 DOI: 10.1530/rep-20-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Maternal recognition of pregnancy (MRP) is a process by which an early conceptus signals its presence to the maternal system and prevents the lysis of the corpus luteum, thus ensuring a maternal milieu supportive of pregnancy continuation. It is a fundamental aspect of reproductive biology, yet in the horse, the mechanism underlying MRP remains unknown. This review seeks to address some of the controversies surrounding the evidence and theories of MRP in the equine species, such as the idea that the horse does not conform to the MRP paradigm established in other species or that equine MRP involves a mechanical, rather than chemical, signal. The review examines the challenges of studying this particularly clandestine phenomenon along with the new tools in scientific research that will drive this quest forward in coming years, and discusses the value of knowledge gleaned along this path in the context of clinical applications for improving breeding outcomes in the horse industry.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
5
|
Meccariello R, D’Angelo S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants (Basel) 2021; 10:507. [PMID: 33805092 PMCID: PMC8064059 DOI: 10.3390/antiox10040507] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.
Collapse
Affiliation(s)
| | - Stefania D’Angelo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, 80133 Naples, Italy;
| |
Collapse
|
6
|
Microplastics: A Threat for Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052392. [PMID: 33804513 PMCID: PMC7967748 DOI: 10.3390/ijerph18052392] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Much of the planet is swimming in discarded plastic, which is harming animal and possibly human health. Once at sea, sunlight, wind, and wave action break down plastic waste into small particles: the microplastics (MPs). Currently, particular attention has been drawn to their effects on aquatic environments but the health risks, especially in mammals, are poorly known. These non-biodegradable materials can act as a vector for environmental pollutants, can be ingested by humans in food and water, and can enter and accumulate in human tissues with a possible risk for heath. Recent studies revealed the deleterious effects of MPs exposure in male reproduction and sperm quality, making them a potential hazard to reproductive success. This manuscript summarizes the main changes in sperm quality along the lifespan and the upcoming studies on the effects of MPs in male fertility in mammals.
Collapse
|
7
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Li L, Li H, Tian Y, Hu M, Le F, Wang L, Liu X, Jin F. Sperm Ribosomal DNA Promoter Methylation Levels Are Correlated With Paternal Aging and May Relate With in vitro Fertilization Outcomes. Front Genet 2020; 11:319. [PMID: 32318099 PMCID: PMC7147477 DOI: 10.3389/fgene.2020.00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
The impact of aging on reproductive outcomes has received considerable critical attention; however, there is much less information available on the effects of paternal age compared to the effects of maternal age. In this study, methylation levels of sperm rDNA promoter regions and Long Interspersed Nucleotide Element 1 (LINE-1) were measured using pyrosequencing and fertilization, day 3 good-quality embryo, pregnancies, and implantation results were assessed. We observed significantly increasing levels of DNA methylation in the sperm rDNA promoter regions with age based on stratifying the samples by age alone (P = 0.0001) and performing linear regression analysis (P < 0.0001). Meanwhile, no statistically significant correlations were observed between global LINE-1 methylation with age. No statistically significant correlations were observed between sperm rDNA promoter methylation levels and either the day 3 good-quality embryo rate or clinical pregnancy rate. In contrast, the correlation between sperm rDNA promoter methylation levels and fertilization (2 pronuclei) rate was nearly significant (P = 0.0707), especially the methylation levels of some individual CpG units (CpG_10, P = 0.0176; CpG_11, P = 0.0438; CpG_14, P = 0.0232) and rDNA promoter methylation levels measured using primerS2 (P = 0.0513). No significant correlation was found between sperm rDNA promoter methylation levels and fertilization rates (2 pronuclei, 1 pronuclei, and 1 polypronuclei). Our results demonstrate that sperm are susceptible to age-associated alterations in methylation levels of rDNA promoter regions, suggesting that sperm rDNA promoter methylation levels can be applied to DNA methylation-based age prediction, and that the aberrant methylation of rDNA promoters may be partially responsible for enhanced disease susceptibility of offspring sired by older fathers. Methylation levels of sperm rDNA promoter regions may correlate with polypronuclei rates of IVF programs.
Collapse
Affiliation(s)
- Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Tian
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhen Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| |
Collapse
|
9
|
Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, Deng W, Yang J, Zhou TT, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Reproductive Aging by Reducing Spermatogonia Stem Cells and Germ Cell Differentiation. iScience 2020; 23:100908. [PMID: 32114381 PMCID: PMC7049665 DOI: 10.1016/j.isci.2020.100908] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Ten-eleven translocation (Tet) enzymes are involved in DNA demethylation, important in regulating embryo development, stem cell pluripotency and tumorigenesis. Alterations of DNA methylation with age have been shown in various somatic cell types. We investigated whether Tet1 and Tet2 regulate aging. We showed that Tet1-deficient mice undergo a progressive reduction of spermatogonia stem cells and spermatogenesis and thus accelerated infertility with age. Tet1 deficiency decreases 5hmC levels in spermatogonia and downregulates a subset of genes important for cell cycle, germ cell differentiation, meiosis and reproduction, such as Ccna1 and Spo11, resulting in premature reproductive aging. Moreover, Tet1 and 5hmC both regulate signaling pathways key for stem cell development, including Wnt and PI3K-Akt, autophagy and stress response genes. In contrast, effect of Tet2 deficiency on male reproductive aging is minor. Hence, Tet1 maintains spermatogonia stem cells with age, revealing an important role of Tet1 in regulating stem cell aging. Tet1 regulates stem cell aging and differentiation Tet1 plays an important role in maintaining spermatogonial stem cells Loss of Tet1 results in exhaustion of spermatogonia and premature reproductive aging Effect of Tet2 deficiency on reproductive aging in males is minor
Collapse
Affiliation(s)
- Guian Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Linlin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huasong Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Mo Gou
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Gong
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Chenglei Tian
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wei Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jiao Yang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tian-Tian Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Intergenerational effects on offspring telomere length: interactions among maternal age, stress exposure and offspring sex. Proc Biol Sci 2019; 286:20191845. [PMID: 31575358 DOI: 10.1098/rspb.2019.1845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Offspring produced by older parents often have reduced longevity, termed the Lansing effect. Because adults usually have similar-aged mates, it is difficult to separate effects of maternal and paternal age, and environmental circumstances are also likely to influence offspring outcomes. The mechanisms underlying the Lansing effect are poorly understood. Variation in telomere length and loss, particularly in early life, is linked to longevity in many vertebrates, and therefore changes in offspring telomere dynamics could be very important in this context. We examined the effect of maternal age and environment on offspring telomere length in zebra finches. We kept mothers under either control (ad libitum food) or more challenging (unpredictable food) circumstances and experimentally minimized paternal age and mate choice effects. Irrespective of the maternal environment, there was a substantial negative effect of maternal age on offspring telomere length, evident in longitudinal and cross-sectional comparisons (average of 39% shorter). Furthermore, in young mothers, sons reared by challenged mothers had significantly shorter telomere lengths than sons reared by control mothers. This effect disappeared when the mothers were old, and was absent in daughters. These findings highlight the importance of telomere dynamics as inter-generational mediators of the evolutionary processes determining optimal age-specific reproductive effort and sex allocation.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstraβe 1a, 1160 Vienna, Austria.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.,Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
O'Flaherty C. Orchestrating the antioxidant defenses in the epididymis. Andrology 2019; 7:662-668. [PMID: 31044545 DOI: 10.1111/andr.12630] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/26/2018] [Accepted: 03/29/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND During the post-testicular maturation that occurs in the epididymis, spermatozoa need to face biochemical and morphological changes that may make them vulnerable to oxidative damage. During spermatogenesis and the epididymal maturation, the spermatozoon acquires antioxidant enzymes needed to face possible increases of reactive oxygen species (ROS) produced by its own aerobic metabolism but also due to ROS produced in high quantities by abnormal spermatozoa. OBJECTIVES Provide an up-to-date review of the enzymatic antioxidant system in the epididymis. MATERIAL AND METHODS A thorough literature review was performed for papers concerning the players of the antioxidant defenses in the epididymis. RESULTS The antioxidant system in the epididymis is composed by superoxide dismutases, catalase, glutathione peroxidases, peroxiredoxins, glutathione-S-transferases, thioredoxins and thioredoxin reductase. They work together to maintain low levels of ROS during the epididymal maturation. Knockout models revealed that the absence of one of the enzyme impact sperm quality affecting a variety of proteins involved in motility, the ability to fertilize oocyte, and promotes oxidative damage to the sperm DNA. DISCUSSION AND CONCLUSIONS These findings suggest that each enzyme is playing a specific role, and in most of the cases, no compensatory mechanisms are put in place when one enzyme is absent. This review highlights the different antioxidant enzymes in the epididymis and their role during maturation of the spermatozoon.
Collapse
Affiliation(s)
- C O'Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
12
|
Morgan HL, Watkins AJ. Transgenerational Impact of Environmental Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:71-89. [PMID: 31471795 DOI: 10.1007/978-3-030-23633-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to adapt to changing environmental conditions is critical for any species to survive. Many environmental changes occur too rapidly for an organism's genome to adapt in time. Accordingly, being able to modify either its own phenotype, or the phenotype of its offspring to better suit future anticipated environmental conditions could afford an organism a significant advantage. However, a range of animal models and human epidemiological data sets are now showing that environmental factors such as changes in the quality or quantity of an individual's diet, temperature, stress or exposure to pollutants can all adversely affect the quality of parental gametes, the development of the preimplantation embryo and the health and wellbeing of offspring over multiple generations. This chapter will examine transgenerational effects of both maternal and paternal environmental factors on offspring development and wellbeing in both human and animal model studies. Changes in the epigenetic status of either parental or grand-parental gametes provide one candidate mechanism through which the impacts of environmental experience can be passed from one generation to another. This chapter will therefore also focus on the impact of parental and grand-parental diet on epigenetic transgenerational inheritance and offspring phenotype.
Collapse
Affiliation(s)
- Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
13
|
O'Flaherty C. Peroxiredoxin 6: The Protector of Male Fertility. Antioxidants (Basel) 2018; 7:antiox7120173. [PMID: 30477206 PMCID: PMC6316438 DOI: 10.3390/antiox7120173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
Abstract
The spermatozoon is a terminal cell with the unique purpose of delivering the paternal genome to the oocyte during fertilization. Once spermatozoa enter into the female reproductive tract, they count on only the antioxidant protection that they received during spermatogenesis and epididymal maturation. Peroxiredoxins (PRDXs), particularly PRDX6, are important players in the antioxidant protection and regulation of reactive oxygen species (ROS) levels in spermatozoa. PRDX6, through its peroxidase and calcium-independent phospholipase A₂ activities, plays a major role in the regulation of ROS to maintain viability and motility and allow the spermatozoon to achieve fertilizing ability during the complex process of capacitation. The absence of PRDX6 is sufficient to promote abnormal reproductive outcomes in mice that resemble what we observe in infertile men. Indeed, Prdx6-/- spermatozoa display low motility and severe DNA damage, which is translated into reduced ability to fertilize oocytes in vitro or produce a low number of pups compared to wild-type controls. This review focuses on the role of PRDX6 as the primary antioxidant enzyme that protects the spermatozoon from oxidative-stress-associated damages to protect the paternal genome and assure fertility.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University and the Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
14
|
Sahara Y, Matsuzawa D, Ishii D, Fuchida T, Goto T, Sutoh C, Shimizu E. Paternal methyl donor deficient diets during development affect male offspring behavior and memory-related gene expression in mice. Dev Psychobiol 2018; 61:17-28. [DOI: 10.1002/dev.21801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yuji Sahara
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Daisuke Matsuzawa
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
- Research Center for Child Mental Development; Chiba University; Chiba Japan
| | - Daisuke Ishii
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
- Center for Medical Sciences; Ibaraki Prefectural University of Health Sciences; Ibaraki Japan
| | - Takahiro Fuchida
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Takashi Goto
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Chihiro Sutoh
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
- Research Center for Child Mental Development; Chiba University; Chiba Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine; Chiba University; Chiba Japan
- Research Center for Child Mental Development; Chiba University; Chiba Japan
| |
Collapse
|
15
|
Associations between male reproductive characteristics and the outcome of assisted reproductive technology (ART). Biosci Rep 2017; 37:BSR20170095. [PMID: 28515223 PMCID: PMC6434081 DOI: 10.1042/bsr20170095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023] Open
Abstract
The present study was designed to investigate the relationships between indicators of male body mass index (BMI), age, reproductive hormone levels, semen parameters, and the outcomes of assisted reproductive technology (ART). The clinical data were collected from 636 couples who underwent ART between January, 2013 and December, 2015 at the reproductive center involved in our study. Pearson’s correlation or Spearman rank correlation was applied to establish the relevant correlation coefficients. The correlation between influence factors’ and pregnancy outcomes was analyzed using the Logistic regression model. Analyses were conducted using SPSS software. Male BMI was found to be negatively correlated with testosterone (T) (P<0.05), while follicle-stimulating hormone (FSH) was negatively correlated with semen parameters (P<0.05). Luteinizing hormone (LH) was found to be negatively correlated with total sperm count, normal sperm morphology, and abortion (all P<0.05). Clinical pregnancy was related to sperm concentration and female age (P<0.05), and live birth was found to be associated only with female age (P<0.05). Male BMI was associated with the secretion of reproductive hormones, but had no effect on sperm parameters or ART outcome. A higher male age was also negatively connected with the outcome of clinical pregnancy. Reproductive hormones were not associated with ART outcome. Sperm concentration and female age were important factors influencing ART clinical pregnancy, while the only significant factor influencing live birth was female age. Levels of obesity-related inflammatory indicators (i.e. free fatty acid (FFA), glutathione peroxidase (GSH-Px), human inhibin-B (IHNB), interleukin-1 (IL-1), insulin-like growth factor-1 (IGF-1), and reactive oxygen species (ROS)) also varied with degrees of BMI. The present study provides information on the associations between male reproductive characteristics and the outcome of ART, which may contribute to improved strategies to help couples achieve better pregnancy outcomes.
Collapse
|
16
|
Tiegs AW, Sachdev NM, Grifo JA, McCulloh DH, Licciardi F. Paternal Age Is Not Associated With Pregnancy Outcomes After Single Thawed Euploid Blastocyst Transfer. Reprod Sci 2017; 24:1319-1324. [DOI: 10.1177/1933719116687660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ashley W. Tiegs
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY, USA
| | - Nidhee M. Sachdev
- Department of Reproductive Endocrinology and Infertility, New York University Fertility Center, New York, NY, USA
| | - Jamie A. Grifo
- Department of Reproductive Endocrinology and Infertility, New York University Fertility Center, New York, NY, USA
- Department of Obstetrics and Gynecology, New York University Fertility Center, New York, NY, USA
| | - David H. McCulloh
- Department of New York University Fertility Center, New York, NY, USA
| | - Frederick Licciardi
- Department of Obstetrics and Gynecology, New York University Fertility Center, New York, NY, USA
- Department of Oocyte Donation Program, New York University Fertility Center, New York, NY, USA
| |
Collapse
|
17
|
Atsem S, Reichenbach J, Potabattula R, Dittrich M, Nava C, Depienne C, Böhm L, Rost S, Hahn T, Schorsch M, Haaf T, El Hajj N. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet 2016; 25:4996-5005. [PMID: 28171595 PMCID: PMC5418740 DOI: 10.1093/hmg/ddw328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 01/27/2023] Open
Abstract
Children of older fathers carry an increased risk for developing autism and other disorders. To elucidate the underlying mechanisms, we investigated the correlation of sperm DNA methylation with paternal age and its impact on the epigenome of the offspring. Methylation levels of nine candidate genes and LINE-1 repeats were quantified by bisulfite pyrosequencing in sperm DNA of 162 donors and 191 cord blood samples of resulting children (conceived by IVF/ICSI with the same sperm samples). Four genes showed a significant negative correlation between sperm methylation and paternal age. For FOXK1 and KCNA7, the age effect on the sperm epigenome was replicated in an independent cohort of 188 sperm samples. For FOXK1, paternal age also significantly correlated with foetal cord blood (FCB) methylation. Deep bisulfite sequencing and allele-specific pyrosequencing allowed us to distinguish between maternal and paternal alleles in FCB samples with an informative SNP. FCB methylation of the paternal FOXK1 allele was negatively correlated with paternal age, whereas maternal allele was unaffected by maternal age. Since FOXK1 duplication has been associated with autism, we studied blood FOXK1 methylation in 74 children with autism and 41 age-matched controls. The FOXK1 promoter showed a trend for accelerated demethylation in the autism group. Dual luciferase reporter assay revealed that FOXK1 methylation influences gene expression. Collectively, our study demonstrates that age-related DNA methylation changes in sperm can be transmitted to the next generation and may contribute to the increased disease risk in offspring of older fathers.
Collapse
Affiliation(s)
- Stefanie Atsem
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | - Juliane Reichenbach
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | - Ramya Potabattula
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France
| | - Lena Böhm
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | - Simone Rost
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | | | | | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Julius-Maximilians University, Würzburg, Germany
| |
Collapse
|
18
|
Fertility management of bulls to improve beef cattle productivity. Theriogenology 2016; 86:397-405. [DOI: 10.1016/j.theriogenology.2016.04.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 01/18/2023]
|
19
|
Ni K, Dansranjavin T, Rogenhofer N, Oeztuerk N, Deuker J, Bergmann M, Schuppe HC, Wagenlehner F, Weidner W, Steger K, Schagdarsurengin U. TET enzymes are successively expressed during human spermatogenesis and their expression level is pivotal for male fertility. Hum Reprod 2016; 31:1411-24. [PMID: 27141042 DOI: 10.1093/humrep/dew096] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/07/2016] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Are ten-eleven-translocation (TET) 1-3 family enzymes involved in human spermatogenesis and do they impact male fertility? SUMMARY ANSWER TET1, TET2 and TET3 are successively expressed at different stages of human spermatogenesis, and their expression levels associate with male fertility. WHAT IS KNOWN ALREADY Spermatogenesis is a complex cell differentiation process accompanied by a drastic epigenetic remodeling. TET1-3 dioxygenases are essential for active DNA demethylation in the paternal pronucleus and in embryonic stem cells. STUDY DESIGN, SIZE, DURATION Expression of TET1-3 mRNAs and proteinss and 5-hydroxymethylcytosine (5-hmC) proteins were analyzed in human testis tissues from men with obstructive azoospermia and exhibiting histologically normal spermatogenesis. Ejaculated spermatozoa from normozoospermic healthy volunteers, the 'controls' (TET1: n = 58; TET2-3: n = 63), and subfertile men who participated with their female partners in an ICSI-program, the 'patients' (TET1: n = 66; TET2-3: n = 64), were analyzed concerning the stored TET1-3 mRNAs, and the values were correlated to semen parameters and ICSI-outcomes. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis sections were used for in situ hybridization (ISH) and immunohistochemical (IHC) studies to determine TET1-3 mRNA and protein expression, and for immunofluorescence (IF) detection of 5-hmC. Sperm samples from controls were analyzed by western blot, immunocytochemistry (ICC) and RT-PCR concerning the presence of non-degraded TET1-3 protein and mRNA. Sperm samples from controls and patients were used for quantitative TET1-3 mRNA analyses (reverse transcription-polymerase chain reaction) and for comparative statistical evaluations under consideration of semen parameters and ICSI-outcome (pregnancy). MAIN RESULTS AND THE ROLE OF CHANCE During human spermatogenesis TET1-3 proteins are successively expressed: TET2 is expressed in the cytoplasm of late pachytene spermatocytes of Stage V, TET1 starts to be expressed in the nuclei of Step 1 round spermatids at Stage I, and TET3 starts to be expressed in the nuclei of Step 3 round spermatids at Stage III. Five-hmC appears only in Step 5 elongated spermatids. All three TETs are still detectable at the mRNA and protein level in sperm cells in considerable amounts. Control men generally exhibited higher levels of TET1-3 in sperm. TET1- and TET3-mRNA levels in sperm were significantly negatively correlated with age (P = 0.0025 and P = 0.0343) and positively correlated with progressive sperm motility (P = 0.0007 and P = 0.018). All TETs showed a significant association with sperm concentration (P < 0.03). Patients diagnosed with oligozoospermia and/or asthenozoospermia (TET1: n = 35; TET2-3: n = 32) showed significantly reduced TET1-3 in sperm in comparison to controls (P = 0.003, P = 0.041 and P = 0.028), but not compared with normozoospermic patients. Levels of TET3 in sperm was significantly associated with high-fertilization rates (P = 0.009). Concerning ICSI-outcome, the lowest levels of TET1-3 mRNAs in sperm were found in the non-pregnant group. Increased TET2 in sperm was significantly associated with pregnancy (P = 0.006). LIMITATIONS, REASONS FOR CAUTION Our results concerning the association of the mRNA level of TETs in ejaculated sperm cells to different fertility parameters are descriptive. Further studies clarifying the reasons for decreased TET1-3 levels in subfertile men and their effect on their sperm methylome are essential. WIDER IMPLICATIONS OF THE FINDINGS The study gives a substantial indication that in human spermiogenesis, an active DNA demethylation process occurs with an involvement of TET enzymes, and that the level of TET1-3 expression is pivotal for male fertility. STUDY FUNDING Research grant from the German Research Foundation (DFG) to U.S. (SCHA1531/1-1 and SCHA1531/2-1). COMPETING INTERESTS None.
Collapse
Affiliation(s)
- Kai Ni
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Temuujin Dansranjavin
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Nina Rogenhofer
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, Clinical Centre of Ludwig Maximilians University, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Nihan Oeztuerk
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Johanna Deuker
- Division of Pulmonary Pharmacotherapy, Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Aulweg 130, 35392 Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Str. 94, 35392 Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Undraga Schagdarsurengin
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| |
Collapse
|
20
|
Gunes S, Hekim GNT, Arslan MA, Asci R. Effects of aging on the male reproductive system. J Assist Reprod Genet 2016; 33:441-54. [PMID: 26867640 DOI: 10.1007/s10815-016-0663-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
The study aims to discuss the effects of aging on the male reproductive system. A systematic review was performed using PubMed from 1980 to 2014. Aging is a natural process comprising of irreversible changes due to a myriad of endogenous and environmental factors at the level of all organs and systems. In modern life, as more couples choose to postpone having a child due to various socioeconomic reasons, research for understanding the effects of aging on the reproductive system has gained an increased importance. Paternal aging also causes genetic and epigenetic changes in spermatozoa, which impair male reproductive functions through their adverse effects on sperm quality and count as, well as, on sexual organs and the hypothalamic-pituitary-gonadal axis. Hormone production, spermatogenesis, and testes undergo changes as a man ages. These small changes lead to decrease in both the quality and quantity of spermatozoa. The offspring of older fathers show high prevalence of genetic abnormalities, childhood cancers, and several neuropsychiatric disorders. In addition, the latest advances in assisted reproductive techniques give older men a chance to have a child even with poor semen parameters. Further studies should investigate the onset of gonadal senesce and its effects on aging men.
Collapse
Affiliation(s)
- Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | | | - Mehmet Alper Arslan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|