1
|
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS NANO 2022; 16:13612-13656. [PMID: 36107156 DOI: 10.1021/acsnano.2c07404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and state-of-the-art characterization techniques for resolving the local property-structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Collapse
Affiliation(s)
- Shaojie Wang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Luo
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Liang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinliang He
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Li
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Xue Y, Gao HM, Yu L, Zhang NN, Kang J, Wang CY, Lu ZY, Whittaker AK, Liu K. Physisorption of Poly(ethylene glycol) on Inorganic Nanoparticles. ACS NANO 2022; 16:6634-6645. [PMID: 35352548 DOI: 10.1021/acsnano.2c01051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poly(ethylene glycol) (PEG) is the most widely used polymer to decorate inorganic nanoparticles (NPs) by the "grafting-to" method for antifouling properties. PEG also shows diverse supramolecular interactions with nanoparticle surfaces and polar molecules, suggesting that the physisorption between PEG chains and NPs cannot be ignored in the "grafting-to" process. However, the effect of physisorption of PEG to NPs on the process of chemisorption has been rarely studied. Herein, we report that unfunctionalized PEG is physically adsorbed on various NPs by polyvalent supramolecular interactions, adopting "loop-and-train-tail" conformations. We investigated the effect of molecular weight of PEG and ligands of the NPs on the conformation of PEG chains by experimental methods and simulation. It is demonstrated that the physisorption of PEG on NPs can facilitate the chemisorption in the initial stages but delays it in the later stages during the "grafting-to" process. This work provides a deeper understanding of the conformation of physisorbed PEG on NPs and the relationship between physisorption and chemisorption.
Collapse
Affiliation(s)
- Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hui-Min Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Joint Research Center for Future Materials, International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Madkour S, Gawek M, Hertwig A, Schönhals A. Do Interfacial Layers in Thin Films Act as an Independent Layer within Thin Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sherif Madkour
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Marcel Gawek
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
4
|
Jiang N, Di X, Salatto D, Nam CY, Fukuto M, Endoh MK, Koga T. Self-Organization of Triblock Copolymer Melt Chains Physisorbed on Non-neutral Surfaces. ACS OMEGA 2018; 3:17805-17813. [PMID: 31458377 PMCID: PMC6644122 DOI: 10.1021/acsomega.8b02912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 06/10/2023]
Abstract
We here report the self-organization process of poly(styrene-b-ethylene/butadiene-b-styrene) (SEBS) triblock copolymer chains physically adsorbed on a non-neutral surface. Spin-cast SEBS thin films were prepared on silicon (Si) substrates and then annealed at a high temperature far above the bulk glass transition temperatures of the two constituent blocks. To reveal the buried interfacial structure, we utilized solvent rinsing processes and a suite of surface-sensitive techniques including ellipsometry, X-ray reflectivity, atomic force microscopy, and grazing incidence small angle X-ray scattering. We revealed that the SEBS chains form two different chain structures on the substrate simultaneously: (i) "flattened chains" with the average height of 2.5 nm but without forming microdomain structures; (ii) "loosely adsorbed chains" with the average height of 11.0 nm and the formation of perpendicularly oriented cylindrical microdomains to the substrate surface. In addition, the kinetics to form the perpendicular-oriented cylinder was sluggish (∼200 h) and proceeded via multistep processes toward the equilibrium state. We also found that the lateral microdomain structures were distorted, and the characteristic lengths of the microdomains were slightly different from the bulk even after reaching "quasiequilibrium" state within the observed time window. Furthermore, we highlight the vital role of the adsorbed chains in the self-assembling process of the entire SEBS thin film: a long-range perturbation associated with the adsorbed chains propagates into the film interior, overwhelming the free surface effect associated with surface segregation of the lower surface tension of polystyrene blocks.
Collapse
Affiliation(s)
- Naisheng Jiang
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Xiaoyu Di
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Daniel Salatto
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Chang-Yong Nam
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973-5000, United States
| | - Masafumi Fukuto
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Maya K. Endoh
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Tadanori Koga
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
5
|
Hill JA, Endres KJ, Meyerhofer J, He Q, Wesdemiotis C, Foster MD. Subtle End Group Functionalization of Polymer Chains Drives Surface Depletion of Entire Polymer Chains. ACS Macro Lett 2018; 7:795-800. [PMID: 35650770 DOI: 10.1021/acsmacrolett.8b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The surface of a blend of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxymethyl ends not only is depleted of the higher energy end groups but also is depleted of any segments belonging to the functionalized chains. This is demonstrated using the emerging technique of surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which detects entire chains that have any repeat unit at the outer surface, and requires no labeling. Detecting entire chains provides information about the relationship of chain functionalization to surface segregation behavior of entire chains. That the surface is depleted of interior segments of functionalized chains as well as of the ends is remarkable, since the functionality at the single chain end involves less than 0.5 wt % of the functionalized polymer chain.
Collapse
Affiliation(s)
- Jacob A. Hill
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kevin J. Endres
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - John Meyerhofer
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, Saint Vincent College, Latrobe, Pennsylvania 15650, United States
| | - Qiming He
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United Statesa
| | - Mark D. Foster
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Sen M, Jiang N, Endoh MK, Koga T, Ribbe A, Rahman A, Kawaguchi D, Tanaka K, Smilgies DM. Locally Favored Two-Dimensional Structures of Block Copolymer Melts on Nonneutral Surfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mani Sen
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275,United States
| | - Naisheng Jiang
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275,United States
| | - Maya K. Endoh
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275,United States
| | - Tadanori Koga
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275,United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Alexander Ribbe
- Department
of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Atikur Rahman
- Department
of Physics, Indian Institute of Science Education and Research (IISER) Pune 411008, India
| | | | | | - Detlef-M. Smilgies
- Cornell High
Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Madkour S, Szymoniak P, Radnik J, Schönhals A. Unraveling the Dynamics of Nanoscopically Confined PVME in Thin Films of a Miscible PVME/PS Blend. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37289-37299. [PMID: 28984128 DOI: 10.1021/acsami.7b10572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Broadband dielectric spectroscopy (BDS) was employed to investigate the glassy dynamics of thin films (7-200 nm) of a poly(vinyl methyl ether) (PVME)/polystyrene (PS) blend (50:50 wt %). For BDS measurements, nanostructured capacitors (NSCs) were employed, where films are allowed a free surface. This method was applied for film thicknesses up to 36 nm. For thicker films, samples were prepared between crossed electrode capacitors (CECs). The relaxation spectra of the films showed multiple processes. The first process was assigned to the α-relaxation of a bulklike layer. For films measured by NSCs, the rates of α-relaxation were higher compared to those of the bulk blend. This behavior was related to the PVME-rich free surface layer at the polymer/air interface. The second process was observed for all films measured by CECs (process X) and the 36 nm film measured by NSCs (process X2). This process was assigned to fluctuations of constraint PVME segments by PS. Its activation energy was found to be thickness-dependent because of the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature dependence was observed for all films measured by NSCs (process X1). It resembled the molecular fluctuations in an adsorbed layer found for thin films of pure PVME, and thus, it is assigned accordingly. This process undergoes an extra confinement because of frozen adsorbed PS segments at the polymer/substrate interface. To our knowledge, this is the first example where confinement-induced changes were observed by BDS for blend thin films.
Collapse
Affiliation(s)
- Sherif Madkour
- Bundesanstalt für Materialforschung und -prüfung-(BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und -prüfung-(BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und -prüfung-(BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung-(BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
8
|
Jiang N, Cheung J, Guo Y, Endoh MK, Koga T, Yuan G, Satija SK. Stability of Adsorbed Polystyrene Nanolayers on Silicon Substrates. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Naisheng Jiang
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794‐2275 USA
| | - JustinM. Cheung
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794‐2275 USA
| | - Yichen Guo
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794‐2275 USA
| | - Maya K. Endoh
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794‐2275 USA
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794‐2275 USA
- Department of Chemistry Stony Brook University Stony Brook NY 11794‐3400 USA
| | - Guangcui Yuan
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Sushil K. Satija
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899 USA
| |
Collapse
|
9
|
Madkour S, Szymoniak P, Heidari M, von Klitzing R, Schönhals A. Unveiling the Dynamics of Self-Assembled Layers of Thin Films of Poly(vinyl methyl ether) (PVME) by Nanosized Relaxation Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7535-7546. [PMID: 28155271 DOI: 10.1021/acsami.6b14404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of poly(vinyl methyl ether) (PVME) (thicknesses: 7-160 nm). For the BDS measurements, a recently designed nanostructured electrode system is employed. A thin film is spin-coated on an ultraflat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with nonconducting nanostructured SiO2 nanospacers with heights of 35 or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincides in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films.
Collapse
Affiliation(s)
- Sherif Madkour
- Bundesanstalt für Materialforschung und Prüfung (BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und Prüfung (BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| | - Mojdeh Heidari
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin , Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Regine von Klitzing
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin , Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und Prüfung (BAM) , Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|