1
|
Aimo A, Vergaro G, González A, Barison A, Lupón J, Delgado V, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MYY, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund P, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Emdin M, Bayes-Genis A. Cardiac remodelling - Part 2: Clinical, imaging and laboratory findings. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:944-958. [PMID: 35488811 DOI: 10.1002/ejhf.2522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/06/2022] Open
Abstract
In patients with heart failure, the beneficial effects of drug and device therapies counteract to some extent ongoing cardiac damage. According to the net balance between these two factors, cardiac geometry and function may improve (reverse remodelling, RR) and even completely normalize (remission), or vice versa progressively deteriorate (adverse remodelling, AR). RR or remission predict a better prognosis, while AR has been associated with worsening clinical status and outcomes. The remodelling process ultimately involves all cardiac chambers, but has been traditionally evaluated in terms of left ventricular volumes and ejection fraction. This is the second part of a review paper by the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology dedicated to ventricular remodelling. This document examines the proposed criteria to diagnose RR and AR, their prevalence and prognostic value, and the variables predicting remodelling in patients managed according to current guidelines. Much attention will be devoted to RR in patients with heart failure with reduced ejection fraction because most studies on cardiac remodelling focused on this setting.
Collapse
Affiliation(s)
- Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Arantxa González
- CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Andrea Barison
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Josep Lupón
- Institut del Cor, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Thomas Thum
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Javier Díez
- Center for Applied Medical Research, Pamplona, Spain
| | - Roger S Y Foo
- Department of Medicine, Yong Loo-Lin School of Medicine, National University Hospital, Singapore, Singapore
| | - Mark Yan Yee Chan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University Hospital, Singapore, Singapore
| | - Chukwuemeka G Anene-Nzelu
- Department of Medicine, Yong Loo-Lin School of Medicine, National University Hospital, Singapore, Singapore
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapy (BCRT), German Center for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- University of the Saarland, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Ewa A Jankowska
- Institute of Heart Disases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Heart Centre, Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | | | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | | | | | - Julio Núñez
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques-Plurithématique 1433 and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie van Linthout
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Zhu J, Yang G. H 2S signaling and extracellular matrix remodeling in cardiovascular diseases: A tale of tense relationship. Nitric Oxide 2021; 116:14-26. [PMID: 34428564 DOI: 10.1016/j.niox.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network that not only provides mechanical support but also transduces essential molecular signals in organ functions. ECM is constantly remodeled to control tissue homeostasis, responsible for cell adhesion, cell migration, cell-to-cell communication, and cell differentiation, etc. The dysregulation of ECM components contributes to various diseases, including cardiovascular diseases, fibrosis, cancer, and neurodegenerative diseases, etc. Aberrant ECM remodeling is initiated by various stress, such as oxidative stress, inflammation, ischemia, and mechanical stress, etc. Hydrogen sulfide (H2S) is a gasotransmitter that exhibits a wide variety of cytoprotective and physiological functions through its anti-oxidative and anti-inflammatory actions. Amounting research shows that H2S can attenuate aberrant ECM remodeling. In this review, we discussed the implications and mechanisms of H2S in the regulation of ECM remodeling in cardiovascular diseases, and highlighted the potential of H2S in the prevention and treatment of cardiovascular diseases through attenuating adverse ECM remodeling.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
3
|
Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure With Reduced Ejection Fraction. JACC-HEART FAILURE 2019; 7:782-794. [PMID: 31401101 DOI: 10.1016/j.jchf.2019.06.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022]
Abstract
In response to injury, hemodynamic changes, or neurohormonal activation, the heart undergoes a series of structural and functional changes that have been termed cardiac remodeling. Remodeling is defined as changes in cardiac geometry and/or function over time and can be measured in terms of changes in cardiac chamber dimensions, wall thickness, volumes, mass, and ejection fraction at serial imaging examinations. As to cardiac chambers, left ventricular (LV) remodeling has been best studied in patients with heart failure with reduced ejection fraction. Although LV remodeling may compensate for abnormal hemodynamic parameters and function in the short term, left unchecked, it is associated with worsening cardiac function and poor prognosis. On the other hand, reversing LV geometry and/or function closer to that of a normal heart (also known as reverse remodeling) is associated with improved cardiac function and better prognosis. Because of its close relationship with clinical outcomes, remodeling may potentially be targeted in clinical management and used in trials as a surrogate endpoint. Standardized definition of remodeling and reliable tools to predict and monitor the presence, direction, and magnitude of cardiac remodeling are needed. Together with clinical and imaging findings, circulating biomarkers (most notably N-terminal pro-B-type natriuretic peptide, high-sensitivity troponin, and soluble suppression of tumorigenesis-2) may be helpful in this respect.
Collapse
|
4
|
Hu S, Cheng M, Guo X, Wang S, Liu B, Jiang H, Huang C, Wu G. Down-regulation of miR-200c attenuates AngII-induced cardiac hypertrophy via targeting the MLCK-mediated pathway. J Cell Mol Med 2019; 23:2505-2516. [PMID: 30680929 PMCID: PMC6433679 DOI: 10.1111/jcmm.14135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been shown to commonly contribute to cardiac hypertrophy (CH). The aim of this study was to test the hypothesis that miR‐200c plays an important role in the progression of CH by targeting myosin light chain kinase (MLCK/MYLK). Methods and results Cardiac hypertrophy was induced by aortic banding (AB) in rats. Cellular hypertrophy in neonatal rat cardiomyocytes (NCMs) was induced by AngII treatment. Echocardiography, histology and molecular measurements were used to assess the results of the experiments. The levels of apoptosis and reactive oxygen species (ROS) were also measured. Quantitative real‐time PCR (qRT‐PCR) and Western blotting were used to measure mRNA and protein levels respectively. The present results showed that miR‐200c expression was increased in response to CH both in vivo and in vitro. The down‐regulation of miRNA‐200c by a specific inhibitor markedly ameliorated CH resulting from AngII treatment, and the mRNA levels of atrial natriuretic peptide, brain natriuretic peptide and β‐myosin heavy chain were simultaneously decreased. Notably, minimal apoptosis and ROS accumulation were identified in AngII‐induced hypertrophic cardiomyocytes. Conversely, the up‐regulation of miR‐200c using specific mimics reversed these effects. Mechanistic investigations demonstrated that the MLCK gene is a direct target of miR‐200c; an increase in miR‐200c levels led to a decrease in the expression of MLCK and its downstream effector, p‐MLC2, while miR‐200c inhibition increased the expression of these proteins. Furthermore, inhibiting MLCK impaired the anti‐hypertrophic effects contributions produced by the knockdown of miR‐200c. Conclusion Our studies suggest that miR‐200c may serve as a potential therapeutic target that could delay hypertrophy. We have also uncovered a relationship between miR‐200c and MLCK, identifying MLCK as a direct mediator of miR‐200c.
Collapse
Affiliation(s)
- Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Beilei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
5
|
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol 2018; 9:1514. [PMID: 30425649 PMCID: PMC6218509 DOI: 10.3389/fphys.2018.01514] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and the associated complications represent a global burden on human health and economics. Cardiovascular diseases are the leading cause of death in diabetic patients, who have a 2–5 times higher risk of developing heart failure than age-matched non-diabetic patients, independent of other comorbidities. Diabetic cardiomyopathy is defined as the presence of abnormal cardiac structure and performance in the absence of other cardiac risk factors, such coronary artery disease, hypertension, and significant valvular disease. Hyperglycemia, hyperinsulinemia, and insulin resistance mediate the pathological remodeling of the heart, characterized by left ventricle concentric hypertrophy and perivascular and interstitial fibrosis leading to diastolic dysfunction. A change in the metabolic status, impaired calcium homeostasis and energy production, increased inflammation and oxidative stress, as well as an accumulation of advanced glycation end products are among the mechanisms implicated in the pathogenesis of diabetic cardiomyopathy. Despite a growing interest in the pathophysiology of diabetic cardiomyopathy, there are no specific guidelines for diagnosing patients or structuring a treatment strategy in clinical practice. Anti-hyperglycemic drugs are crucial in the management of diabetes by effectively reducing microvascular complications, preventing renal failure, retinopathy, and nerve damage. Interestingly, several drugs currently in use can improve cardiac health beyond their ability to control glycemia. GLP-1 receptor agonists and sodium-glucose co-transporter 2 inhibitors have been shown to have a beneficial effect on the cardiovascular system through a direct effect on myocardium, beyond their ability to lower blood glucose levels. In recent years, great improvements have been made toward the possibility of modulating the expression of specific cardiac genes or non-coding RNAs in vivo for therapeutic purpose, opening up the possibility to regulate the expression of key players in the development/progression of diabetic cardiomyopathy. This review summarizes the pathogenesis of diabetic cardiomyopathy, with particular focus on structural and molecular abnormalities occurring during its progression, as well as both current and potential future therapies.
Collapse
Affiliation(s)
- Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Baek KI, Packard RRS, Hsu JJ, Saffari A, Ma Z, Luu AP, Pietersen A, Yen H, Ren B, Ding Y, Sioutas C, Li R, Hsiai TK. Ultrafine Particle Exposure Reveals the Importance of FOXO1/Notch Activation Complex for Vascular Regeneration. Antioxid Redox Signal 2018; 28:1209-1223. [PMID: 29037123 PMCID: PMC5912723 DOI: 10.1089/ars.2017.7166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Redox active ultrafine particles (UFP, d < 0.2 μm) promote vascular oxidative stress and atherosclerosis. Notch signaling is intimately involved in vascular homeostasis, in which forkhead box O1 (FOXO1) acts as a co-activator of the Notch activation complex. We elucidated the importance of FOXO1/Notch transcriptional activation complex to restore vascular regeneration after UFP exposure. RESULTS In a zebrafish model of tail injury and repair, transgenic Tg(fli1:GFP) embryos developed vascular regeneration at 3 days post amputation (dpa), whereas UFP exposure impaired regeneration (p < 0.05, n = 20 for control, n = 28 for UFP). UFP dose dependently reduced Notch reporter activity and Notch signaling-related genes (Dll4, JAG1, JAG2, Notch1b, Hey2, Hes1; p < 0.05, n = 3). In the transgenic Tg(tp1:GFP; flk1:mCherry) embryos, UFP attenuated endothelial Notch activity at the amputation site (p < 0.05 vs. wild type [WT], n = 20). A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) inhibitor or dominant negative (DN)-Notch1b messenger RNA (mRNA) disrupted the vascular network, whereas notch intracellular cytoplasmic domain (NICD) mRNA restored the vascular network (p < 0.05 vs. WT, n = 20). UFP reduced FOXO1 expression, but not Master-mind like 1 (MAML1) or NICD (p < 0.05, n = 3). Immunoprecipitation and immunofluorescence demonstrated that UFP attenuated FOXO1-mediated NICD pull-down and FOXO1/NICD co-localization, respectively (p < 0.05, n = 3). Although FOXO1 morpholino oligonucleotides (MOs) attenuated Notch activity, FOXO1 mRNA reversed UFP-mediated reduction in Notch activity to restore vascular regeneration and blood flow (p < 0.05 vs. WT, n = 5). Innovation and Conclusion: Our findings indicate the importance of the FOXO1/Notch activation complex to restore vascular regeneration after exposure to the redox active UFP. Antioxid. Redox Signal. 28, 1209-1223.
Collapse
Affiliation(s)
- Kyung In Baek
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - René R Sevag Packard
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Jeffrey J Hsu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Arian Saffari
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Zhao Ma
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Anh Phuong Luu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Andrew Pietersen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Hilary Yen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Bin Ren
- 4 Division of Hematology and Oncology, Medical College of Wisconsin , Milwaukee, Wisconsin.,5 Blood Research Institute , Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Yichen Ding
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Constantinos Sioutas
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Rongsong Li
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Tzung K Hsiai
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California.,2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California.,6 Research Services, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles , California
| |
Collapse
|
7
|
Xiao Y, Zhang X, Fan S, Cui G, Shen Z. MicroRNA-497 Inhibits Cardiac Hypertrophy by Targeting Sirt4. PLoS One 2016; 11:e0168078. [PMID: 27992564 PMCID: PMC5161464 DOI: 10.1371/journal.pone.0168078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/28/2016] [Indexed: 01/17/2023] Open
Abstract
Cardiac hypertrophy is an adaptive enlargement of the myocardium in response to overload pressure of heart. From abundant studies, a conclusion is drawn that many microRNAs (miRNAs) are associated with cardiac hypertrophy and heart failure. To investigate the role of microRNA-497 (miR-497) in myocardial hypertrophy, two models were established in this study from cell level to integral level. Cardiac hypertrophy was induced by using angiotensin Ⅱ (Ang Ⅱ) in vitro and was created by transverse abdominal aortic constriction (TAC) in vivo. There was a significant decrease expression of miR-497 in cardiac hypertrophy models. Moreover, overexpression of miR-497 inhibited myocardial hypertrophy both in vitro and in vivo without heart function variation. In addition, luciferase reporter assays demonstrated that Sirt4 was a direct target gene of miR-497. Taking together, our study indicates that miR-497 modulates cardiac hypertrophy by targeting Sirt4 and may serve as a potential therapeutic substance in the course.
Collapse
Affiliation(s)
- Yimin Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
- Department of Cardiovascular Surgery, Shanghai Yodak Cardiothracic Hospital, Shanghai, China
| | - Xiaofei Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
- Department of Cardiovascular Surgery, Shanghai Yodak Cardiothracic Hospital, Shanghai, China
| | - Shihao Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
- Department of Cardiovascular Surgery, Shanghai Yodak Cardiothracic Hospital, Shanghai, China
| | - Guanghao Cui
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
8
|
Zhang Y, Huang R, Zhou W, Zhao Q, Lü Z. miR-192-5p mediates hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes via targeting of FABP3. J Biochem Mol Toxicol 2016; 31. [PMID: 27780314 DOI: 10.1002/jbt.21873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a leading cause of morbidity and mortality. In this study, we investigated the role of miR-192-5p in hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis. H9c2 cardiomyocytes were subjected to H/R and tested for miR-192-5p expression. Overexpression and knockdown experiments were performed to determine the effects of manipulating miR-192-5p on apoptotic responses. H/R-treated H9c2 cells exhibited a 2.2-fold increase in miR-192-5p levels. Overexpression of miR-192-5p significantly augmented apoptosis in H9c2 cells after H/R, which was accompanied by a significant increase in the ratio of Bax/Bcl-2. In contrast, delivery of anti-miR-192-5p inhibitors significantly reduced apoptosis induced by H/R. FABP3 was identified to be a functional target of miR-192-5p. Restoration of FABP3 prevented apoptosis in miR-192-5p-transfected H9c2 cells, whereas downregulation of FABP3 enhanced apoptosis in H/R-exposed H9c2 cells. In conclusion, miR-192-5p mediates H/R-induced apoptosis in cardiomyocytes by targeting FABP3 and represents a potential target for prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Risheng Huang
- Department of Cardiothoracic Surgery, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Weihe Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qifeng Zhao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenye Lü
- Department of Cardiothoracic Surgery, Wenzhou People's Hospital, Wenzhou, People's Republic of China
| |
Collapse
|
9
|
Tuttolomondo A, Simonetta I, Pinto A. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure. Expert Opin Ther Targets 2016; 20:1287-1300. [PMID: 27409295 DOI: 10.1080/14728222.2016.1212017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Irene Simonetta
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Antonio Pinto
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| |
Collapse
|
10
|
Wong LL, Wang J, Liew OW, Richards AM, Chen YT. MicroRNA and Heart Failure. Int J Mol Sci 2016; 17:502. [PMID: 27058529 PMCID: PMC4848958 DOI: 10.3390/ijms17040502] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) imposes significant economic and public health burdens upon modern society. It is known that disturbances in neurohormonal status play an important role in the pathogenesis of HF. Therapeutics that antagonize selected neurohormonal pathways, specifically the renin-angiotensin-aldosterone and sympathetic nervous systems, have significantly improved patient outcomes in HF. Nevertheless, mortality remains high with about 50% of HF patients dying within five years of diagnosis thus mandating ongoing efforts to improve HF management. The discovery of short noncoding microRNAs (miRNAs) and our increasing understanding of their functions, has presented potential therapeutic applications in complex diseases, including HF. Results from several genome-wide miRNA studies have identified miRNAs differentially expressed in HF cohorts suggesting their possible involvement in the pathogenesis of HF and their potential as both biomarkers and as therapeutic targets. Unravelling the functional relevance of miRNAs within pathogenic pathways is a major challenge in cardiovascular research. In this article, we provide an overview of the role of miRNAs in the cardiovascular system. We highlight several HF-related miRNAs reported from selected cohorts and review their putative roles in neurohormonal signaling.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Juan Wang
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Arthur Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
- Cardiac Department, National University Health System, Tower Block Level 9, 1E Kent Ridge Road, Singapore 119228, Singapore.
- Christchurch Heart Institute, Department of Medicine, University of Otago, PO Box 4345, Christchurch 8014, New Zealand.
| | - Yei-Tsung Chen
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|