1
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. G3 (BETHESDA, MD.) 2025; 15:jkaf050. [PMID: 40053835 PMCID: PMC12060230 DOI: 10.1093/g3journal/jkaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
The courtship song of Drosophila melanogaster has long served as an excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged ∼13,000 years ago, show significant genetic differentiation in the use of slow vs fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis, we detected a single strong quantitative trait locus underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with 6 additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594231. [PMID: 38798463 PMCID: PMC11118343 DOI: 10.1101/2024.05.14.594231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The courtship song of Drosophila melanogaster has long served as an excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
3
|
Cerrillo-Mancilla LL, Cano-Ramírez C, Zúñiga G. Acoustic Communication in Dendroctonus adjunctus Blandford (Curculionidae Scolytinae): Description of Calls and Sound Production Mechanism. INSECTS 2024; 15:542. [PMID: 39057274 PMCID: PMC11277085 DOI: 10.3390/insects15070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The acoustic communication system (ACS) in bark beetles has been studied mainly in species of the genera Dendroctonus, Ips and Polygraphus. Specifically, ACS of the roundheaded pine beetle, Dendroctonus adjunctus, has been little studied. In this study, we described the stridulatory apparatus of this beetle using optical and scanning electron microscopy and recorded the call types produced by males in three behavioral contexts: stress, female-male-, and male-male interactions. From the spectrograms and waveforms, call types, as well as temporal (tooth strike, tooth strike rate, and intertooth strike interval) and spectral features (minimum, maximum and dominant frequency), were determined. Males have a functional elytro-tergal stridulatory apparatus-females do not-consisting of a file for the pars stridens and two lobes for the plectrum. Most of spectro-temporal features were statistically different between single- and multi-noted calls and across the three behavioral contexts. In the male-male interaction, a new type of call named "withdrawal" was produced by the male withdrawing or fleeing. Our results suggest that the spectro-temporal features of single- and multiple-noted calls in the three behavioral conditions are specific and different from each other. Yet, the combination of single and multiple calls determines an overall calling pattern characteristic of the tested behaviors and, therefore, is species-specific.
Collapse
Affiliation(s)
| | - Claudia Cano-Ramírez
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Ciudad de México 11340, México;
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Ciudad de México 11340, México;
| |
Collapse
|
4
|
Bedoya CL, Brockerhoff EG, Kirkendall LR, Hofstetter RW, Nelson XJ. Body size and sequence of host colonisation predict the presence of acoustic signalling in beetles. Sci Rep 2024; 14:15532. [PMID: 38969671 PMCID: PMC11226610 DOI: 10.1038/s41598-024-66108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Acoustic communication is widespread in beetles, is often sexually dimorphic, and plays a significant role in behaviours such as premating recognition, courtship, and copulation. However, the factors that determine the presence or absence of acoustic signalling in a given species remain unclear. We examined acoustic communication in bark beetles (Scolytinae) and pinhole borers (Platypodinae), which are two speciose groups with widespread sound production capabilities. We show that body size along with the sequence of host colonisation predict the presence of acoustic communication, and report, for the first time in the animal kingdom, a size limit-1.9 mm-below which acoustic signalling ceases to be present.
Collapse
Affiliation(s)
- Carol L Bedoya
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand.
- Atarau Sanctuary, Christchurch, Canterbury, New Zealand.
| | - Eckehard G Brockerhoff
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
- Scion (New Zealand Forest Research Institute), Christchurch, Canterbury, New Zealand
- Swiss Federal Research Institute WSL, Birmensdorf, Zurich, Switzerland
| | | | | | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| |
Collapse
|
5
|
Martini F, Chen YF, Mammides C, Goodale E, Goodale UM. Exploring potential relationships between acoustic indices and ecosystem functions: a test on insect herbivory. Oecologia 2024; 204:875-883. [PMID: 38581444 PMCID: PMC11062954 DOI: 10.1007/s00442-024-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024]
Abstract
Biodiversity loss is a global concern. Current technological advances allow the development of novel tools that can monitor biodiversity remotely with minimal disturbance. One example is passive acoustic monitoring (PAM), which involves recording the soundscape of an area using autonomous recording units, and processing these data using acoustic indices, for example, to estimate the diversity of various vocal animal groups. We explored the hypothesis that data obtained through PAM could also be used to study ecosystem functions. Specifically, we investigated the potential relationship between seven commonly used acoustic indices and insect leaf herbivory, measured as total leaf damage and as the damage from three major insect feeding guilds. Herbivory was quantified on seedlings in 13 plots in four subtropical forests in south China, and acoustic data, representing insect acoustic complexity, were obtained by recording the evening soundscapes in those same locations. Herbivory levels correlated positively with the acoustic entropy index, commonly reported as one of the best-performing indices, whose high values indicate higher acoustic complexity, likely due to greater insect diversity. Relationships for specific feeding guilds were moderately stronger for chewers, indicating that the acoustic indices capture some insect groups more than others (e.g., chewers include soniferous taxa such as crickets, whereas miners are mostly silent). Our findings suggest that the use of PAM to monitor ecosystem functions deserves to be explored further, as this is a research field with unexplored potential. Well-designed targeted studies could help us better understand how to best use novel technologies to monitor ecosystem functions.
Collapse
Affiliation(s)
- Francesco Martini
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - You-Fang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Christos Mammides
- Nature Conservation Unit, Frederick University, 7, Yianni Frederickou Street, Pallouriotissa, 1036, Nicosia, Cyprus
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong Liverpool University, Suzhou, China
| | - Uromi Manage Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong Liverpool University, Suzhou, China
| |
Collapse
|
6
|
Díaz-García L, Latham B, Reid A, Windmill J. Review of the applications of principles of insect hearing to microscale acoustic engineering challenges. BIOINSPIRATION & BIOMIMETICS 2023; 18:051002. [PMID: 37499689 DOI: 10.1088/1748-3190/aceb29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
When looking for novel, simple, and energy-efficient solutions to engineering problems, nature has proved to be an incredibly valuable source of inspiration. The development of acoustic sensors has been a prolific field for bioinspired solutions. With a diverse array of evolutionary approaches to the problem of hearing at small scales (some widely different to the traditional concept of 'ear'), insects in particular have served as a starting point for several designs. From locusts to moths, through crickets and mosquitoes among many others, the mechanisms found in nature to deal with small-scale acoustic detection and the engineering solutions they have inspired are reviewed. The present article is comprised of three main sections corresponding to the principal problems faced by insects, namely frequency discrimination, which is addressed by tonotopy, whether performed by a specific organ or directly on the tympana; directionality, with solutions including diverse adaptations to tympanal structure; and detection of weak signals, through what is known as active hearing. The three aforementioned problems concern tiny animals as much as human-manufactured microphones and have therefore been widely investigated. Even though bioinspired systems may not always provide perfect performance, they are sure to give us solutions with clever use of resources and minimal post-processing, being serious contenders for the best alternative depending on the requisites of the problem.
Collapse
Affiliation(s)
- Lara Díaz-García
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Brendan Latham
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Andrew Reid
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - James Windmill
- Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
7
|
Gomes DGE, Toth CA, Bateman CC, Francis CD, Kawahara AY, Barber JR. Experimental river noise alters arthropod abundance. OIKOS 2021. [DOI: 10.1111/oik.08499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dylan G. E. Gomes
- Dept of Biological Sciences, Boise State Univ. Boise ID USA
- Cooperative Inst. for Marine Resources Studies – Hatfield Marine Science Center, Oregon State Univ. Newport OR USA
| | - Cory A. Toth
- Dept of Biological Sciences, Boise State Univ. Boise ID USA
| | - Craig C. Bateman
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, Univ. of Florida Gainesville FL USA
| | - Clinton D. Francis
- Dept of Biological Sciences, California Polytechnic State Univ. San Luis Obispo CA USA
| | - Akito Y. Kawahara
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, Univ. of Florida Gainesville FL USA
| | | |
Collapse
|
8
|
Fattoruso V, Anfora G, Mazzoni V. Vibrational communication and mating behavior of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). Sci Rep 2021; 11:6543. [PMID: 33753797 PMCID: PMC7985380 DOI: 10.1038/s41598-021-85904-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
The greenhouse whitefly (GW), Trialeurodes vaporariorum is considered one of the most harmful insect pests in greenhouses worldwide. The GW mating behavior has been partially investigated and its vibrational communication is only in part known. A deeper knowledge of its intraspecific communication is required to evaluate the applicability of control methods based on techniques of behavioral manipulation. In this study, for the first time, we provided a detailed ethogram of the GW mating behavior and we characterized the vibrational signals emitted during the process of pair formation. We characterized two types of male vibrational emissions ("chirp" and "pulses"), differently arranged according to the behavioral stage to form stage-specific signals, and a previously undescribed Male Rivalry Signal. We recorded and characterized two new female signals: The Female Responding Signal and the Female Rejective Signal. The mating behavior of GW can be divided into six different stages that we named "call", "alternated duet", "courtship", "overlapped duet", "mating", "failed mating attempt". The analysis performed with the Markovian behavioral transition matrix showed that the "courtship" is the key stage in which male exhibits its quality and can lead to the "overlapped duet" stage. The latter is strictly associated to the female acceptance and therefore it plays a crucial role to achieve mating success. Based on our findings, we consider the use of vibrational playbacks interfering with GW mating communication a promising option for pest control in greenhouses. We discuss the possibility to start a research program of behavioral manipulation to control the populations of GW.
Collapse
Affiliation(s)
- Valeria Fattoruso
- Center Agriculture Food Environment, University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy.
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy.
| | - Gianfranco Anfora
- Center Agriculture Food Environment, University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
| | - Valerio Mazzoni
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
9
|
Yack JE, Raven BH, Leveillee MB, Naranjo M. What Does an Insect Hear? Reassessing the Role of Hearing in Predator Avoidance with Insights from Vertebrate Prey. Integr Comp Biol 2020; 60:1036-1057. [PMID: 32717080 DOI: 10.1093/icb/icaa097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction, locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls, songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk, there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds, the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators. We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the varied responses exhibited by prey to these sounds.
Collapse
Affiliation(s)
- Jayne E Yack
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Brianna H Raven
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Michelle B Leveillee
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Mairelys Naranjo
- Department of Biology, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
10
|
Kerman K, Roggero A, Piccini I, Rolando A, Palestrini C. Dung beetle distress signals may be correlated with sex and male morph: a case study on Copris lunaris (Coleoptera: Scarabaeidae, Coprini). BIOACOUSTICS 2020. [DOI: 10.1080/09524622.2019.1710255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kaan Kerman
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Irene Piccini
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Abstract
Acoustic communication is crucial to humans and many other tetrapods, including birds, frogs, crocodilians, and mammals. However, large-scale patterns in its evolution are largely unstudied. Here, we address several fundamental questions about the origins of acoustic communication in terrestrial vertebrates (tetrapods), using phylogenetic methods. We show that origins of acoustic communication are significantly associated with nocturnal activity. We find that acoustic communication does not increase diversification rates, a surprising result given the many speciation-focused studies of frog calls and bird songs. We also demonstrate that the presence of acoustic communication is strongly conserved over time. Finally, we find that acoustic communication evolved independently in most major tetrapod groups, often with remarkably ancient origins (~100-200 million years ago). Overall, we show that the role of ecology in shaping signal evolution applies to surprisingly deep timescales, whereas the role of signal evolution in diversification may not.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences, Henan Normal University, 453007, Xinxiang, Henan Province, China
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA.
| |
Collapse
|
12
|
Kerchev IA. Interspecific differences of stridulatory signals in three species of bark beetles from the genus Polygraphus Er. (Coleoptera: Curculionidae, Scolytinae) inhabiting the island of Sakhalin. PeerJ 2020; 8:e8281. [PMID: 31915580 PMCID: PMC6942674 DOI: 10.7717/peerj.8281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Stridulatory signals are involved in conspecific interactions between bark beetles (Coleoptera: Curculionidae, Scolytinae). In this study, we compared the qualitative profiles of acoustic signals in three species from the genus Polygraphus Er. Sympatry can be periodically observed in two of them –P. proximus and P. subopacus. Sporadically they occur on the same plants. P. nigrielytris colonize distinctly different host plant species; however, on the island of Sakhalin it inhabits the same biotopes. The purpose of the study is to identify species-specific parameters and the extent of differences in stridulatory signals of these species. Airborne signals produced during the contact of males of the same species were experimentally recorded. Among tested parameters of stridulatory signals, as the most species-specific were noted: chirp duration, number of tooth-strikes per chirp, and intertooth-strike interval.
Collapse
Affiliation(s)
- Ivan Andreevich Kerchev
- Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of Russian Academy of Sciences, Tomsk, Russian Federation.,Department of Forestry and Landscape Construction, National Research Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
13
|
Dowdy NJ, Conner WE. Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Szumik C, Juárez ML, Ramirez MJ, Goloboff P, Pereyra VV. Implications of the Tympanal Hearing Organ and Ultrastructure of Chaetotaxy for the Higher Classification of Embioptera. AMERICAN MUSEUM NOVITATES 2019. [DOI: 10.1206/3933.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Claudia Szumik
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - María Laura Juárez
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Martín J. Ramirez
- División Aracnología, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina
| | - Pablo Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Verónica V. Pereyra
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| |
Collapse
|
15
|
Raboin M, Elias DO. Anthropogenic noise and the bioacoustics of terrestrial invertebrates. ACTA ACUST UNITED AC 2019; 222:222/12/jeb178749. [PMID: 31217253 DOI: 10.1242/jeb.178749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise is an important issue of environmental concern owing to its wide-ranging effects on the physiology, behavior and ecology of animals. To date, research has focused on the impacts of far-field airborne noise (i.e. pressure waves) on vertebrates, with few exceptions. However, invertebrates and the other acoustic modalities they rely on, primarily near-field airborne and substrate-borne sound (i.e. particle motion and vibrations, respectively) have received little attention. Here, we review the literature on the impacts of different types of anthropogenic noise (airborne far-field, airborne near-field, substrate-borne) on terrestrial invertebrates. Using literature on invertebrate bioacoustics, we propose a framework for understanding the potential impact of anthropogenic noise on invertebrates and outline predictions of possible constraints and adaptations for invertebrates in responding to anthropogenic noise. We argue that understanding the impacts of anthropogenic noise requires us to consider multiple modalities of sound and to cultivate a broader understanding of invertebrate bioacoustics.
Collapse
Affiliation(s)
- Maggie Raboin
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Damian O Elias
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Scherberich J, Hummel J, Schöneich S, Nowotny M. Functional basis of the sexual dimorphism in the auditory fovea of the duetting bushcricket Ancylecha fenestrata. Proc Biol Sci 2018; 284:rspb.2017.1426. [PMID: 29046376 DOI: 10.1098/rspb.2017.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
From mammals to insects, acoustic communication is in many species crucial for successful reproduction. In the duetting bushcricket Ancylecha fenestrata, the mutual acoustic communication between males and females is asymmetrical. We investigated how those signalling disparities are reflected by sexual dimorphism of their ears. Both sexes have tympanic ears in their forelegs, but male ears possess a significantly longer crista acustica containing 35% more scolopidia. With more sensory cells to cover a similar hearing range, the male hearing organ shows a significantly expanded auditory fovea that is tuned to the dominant frequency of the female reply to facilitate phonotactic mate finding. This sex-specific auditory fovea is demonstrated in the mechanical and neuronal responses along the tonotopically organized crista acustica by laservibrometric and electrophysiological frequency mapping, respectively. Morphometric analysis of the crista acustica revealed an interrupted gradient in organ height solely within this auditory fovea region, whereas all other anatomical parameters decrease continuously from proximal to distal. Combining behavioural, anatomical, biomechanical and neurophysiological information, we demonstrate evidence of a pronounced auditory fovea as a sex-specific adaptation of an insect hearing organ for intraspecific acoustic communication.
Collapse
Affiliation(s)
- Jan Scherberich
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Jennifer Hummel
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Stefan Schöneich
- Institute for Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
18
|
Schneider ES, Römer H, Robillard T, Schmidt AKD. Hearing with exceptionally thin tympana: Ear morphology and tympanal membrane vibrations in eneopterine crickets. Sci Rep 2017; 7:15266. [PMID: 29127426 PMCID: PMC5681576 DOI: 10.1038/s41598-017-15282-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
The receiver sensory system plays a crucial role in the evolution of new communication signals in insects. Among acoustic communicating crickets, the tribe Lebinthini (Eneopterinae) has evolved a unique communication system in that males produce exceptionally high-frequency calls and females respond with vibratory signals to guide males towards them. In this study, we describe nine species of Eneopterinae in which the sound receiving structures have undergone considerable morphological changes. We revealed that the anterior tympanal membrane (ATM) of the ear was extremely thin, as little as 0.35 µm thick, and to the best of our knowledge, this is the thinnest tympanal membrane found in crickets thus far. Measurements of tympanum vibrations obtained from Lebinthus bitaeniatus demonstrated a strong sensitivity towards higher frequencies. The finding also coincides with the neuronal tuning of ascending neurons and the behavioural response of the Lebinthini. The morphologically specialized ATM and its mechanical sensitivity for high frequencies, therefore, may have driven the sensory exploitation of an anti-predator behaviour that led to the evolution of a new communication system known for this group of crickets. The hypothetical phylogenetic origin of the investigated tympanal ears is discussed.
Collapse
Affiliation(s)
- Erik S Schneider
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Heinrich Römer
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205, CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP 50 (Entomologie), 75231, Paris, Cedex 05, France
| | - Arne K D Schmidt
- Department of Zoology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria.
| |
Collapse
|