1
|
Chen CC, Liu CC, Wang YH, Wu CF, Tsai YC, Li SS, Hsieh TJ, Wu MT. Benchmark Dose of Melamine Exposure for a Renal Injury Marker Mediated by Oxidative Stress: Examples in Patients with Urolithiasis and Occupational Workers. TOXICS 2024; 12:584. [PMID: 39195686 PMCID: PMC11359403 DOI: 10.3390/toxics12080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Establishing a safe exposure level from epidemiological studies while providing direct hazard characterization in humans often faces uncertainty in causality, especially cross-sectional data. With advances in molecular epidemiology, it is reasonable to integrate identified intermediate biomarkers into health risk assessment. In this study, by considering the mediation of the oxidative stress marker malondialdehyde (MDA), we explored the exposure threshold of melamine on the early renal injury marker N-acetyl-β-D glucosaminidase (NAG). The benchmark dose (BMD) was derived from model averaging of the composite direct effect of melamine exposure and the indirect effect through the mediation of MDA on NAG levels. As illustrative examples, we analyzed 309 adult patients with calcium urolithiasis and 80 occupational workers for the corresponding exposure thresholds. The derived threshold was subpopulation-dependent, with the one-sided lower bound BMDL10 for the patients with urolithiasis with (without) the mediator MDA for the patients with kidney stones and the occupational workers being 0.88 (0.96) μg/kg_bw/day and 22.82 (18.09) μg/kg_bw/day, respectively. The derived threshold levels, considering the oxidative stress marker MDA, were consistent with those without adjusting for the mediation effect. However, the study outcomes were further supported by the suggested mechanism pathway. The threshold for the patients with urolithiasis was up to two orders lower than the current tolerable daily intake level of 200 μg/kg_bw/day recommended by the WHO (EFSA).
Collapse
Affiliation(s)
- Chu-Chih Chen
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli 350401, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
| | - Chia-Chu Liu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City 90054, Taiwan
| | - Yin-Han Wang
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli 350401, Taiwan;
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- International Master Program of Translational Medicine, National United University, Miaoli 360301, Taiwan
| | - Yi-Chun Tsai
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Room 721, CS Research Building, 100 Shih-Chuan 1st Road, Kaohsiung 807378, Taiwan; (C.-C.L.); (C.-F.W.); (Y.-C.T.); (S.-S.L.); (T.-J.H.)
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
McLean P, Mueller W, Gosens I, Cassee FR, Rothen-Rutishauser B, Boyles M, Tran L. Establishing relationships between particle-induced in vitro and in vivo inflammation endpoints to better extrapolate between in vitro markers and in vivo fibrosis. Part Fibre Toxicol 2023; 20:5. [PMID: 36759844 PMCID: PMC9909881 DOI: 10.1186/s12989-023-00516-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Toxicity assessment for regulatory purposes is starting to move away from traditional in vivo methods and towards new approach methodologies (NAM) such as high-throughput in vitro models and computational tools. For materials with limited hazard information, utilising quantitative Adverse Outcome Pathways (AOPs) in a testing strategy involving NAM can produce information relevant for risk assessment. The aim of this work was to determine the feasibility of linking in vitro endpoints to in vivo events, and moreover to key events associated with the onset of a chosen adverse outcome to aid in the development of NAM testing strategies. To do this, we focussed on the adverse outcome pathway (AOP) relating to the onset of pulmonary fibrosis. RESULTS We extracted in vivo and in vitro dose-response information for particles known to induce this pulmonary fibrosis (crystalline silica, specifically α-quartz). To test the in vivo-in vitro extrapolation (IVIVE) determined for crystalline silica, cerium dioxide nanoparticles (nano-CeO2) were used as a case study allowing us to evaluate our findings with a less studied substance. The IVIVE methodology outlined in this paper is formed of five steps, which can be more generally summarised into two categories (i) aligning the in vivo and in vitro dosimetry, (ii) comparing the dose-response curves and derivation of conversion factors. CONCLUSION Our analysis shows promising results with regards to correlation of in vitro cytokine secretion to in vivo acute pulmonary inflammation assessed by polymorphonuclear leukocyte influx, most notable is the potential of using IL-6 and IL-1β cytokine secretion from simple in vitro submerged models as a screening tool to assess the likelihood of lung inflammation at an early stage in product development, hence allowing a more targeted investigation using either a smaller, more targeted in vivo study or in the future a more complex in vitro protocol. This paper also highlights the strengths and limitations as well as the current difficulties in performing IVIVE assessment and suggestions for overcoming these issues.
Collapse
Affiliation(s)
- Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh, UK.
| | - William Mueller
- grid.410343.10000 0001 2224 0230Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Ilse Gosens
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment – RIVM, Bilthoven, The Netherlands
| | - Flemming R. Cassee
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment – RIVM, Bilthoven, The Netherlands ,grid.5477.10000000120346234Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Rothen-Rutishauser
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Matthew Boyles
- grid.410343.10000 0001 2224 0230Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Lang Tran
- grid.410343.10000 0001 2224 0230Institute of Occupational Medicine (IOM), Edinburgh, UK
| |
Collapse
|
3
|
Moreau M, Mallick P, Smeltz M, Haider S, Nicolas CI, Pendse SN, Leonard JA, Linakis MW, McMullen PD, Clewell RA, Clewell HJ, Yoon M. Considerations for Improving Metabolism Predictions for In Vitro to In Vivo Extrapolation. FRONTIERS IN TOXICOLOGY 2022; 4:894569. [PMID: 35573278 PMCID: PMC9099212 DOI: 10.3389/ftox.2022.894569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
High-throughput (HT) in vitro to in vivo extrapolation (IVIVE) is an integral component in new approach method (NAM)-based risk assessment paradigms, for rapidly translating in vitro toxicity assay results into the context of in vivo exposure. When coupled with rapid exposure predictions, HT-IVIVE supports the use of HT in vitro assays for risk-based chemical prioritization. However, the reliability of prioritization based on HT bioactivity data and HT-IVIVE can be limited as the domain of applicability of current HT-IVIVE is generally restricted to intrinsic clearance measured primarily in pharmaceutical compounds. Further, current approaches only consider parent chemical toxicity. These limitations occur because current state-of-the-art HT prediction tools for clearance and metabolite kinetics do not provide reliable data to support HT-IVIVE. This paper discusses current challenges in implementation of IVIVE for prioritization and risk assessment and recommends a path forward for addressing the most pressing needs and expanding the utility of IVIVE.
Collapse
Affiliation(s)
- Marjory Moreau
- ScitoVation, LLC, Durham, NC, United States
- *Correspondence: Marjory Moreau,
| | | | | | | | | | | | - Jeremy A. Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | | | | | | | | | | |
Collapse
|
4
|
Buick JK, Williams A, Meier MJ, Swartz CD, Recio L, Gagné R, Ferguson SS, Engelward BP, Yauk CL. A Modern Genotoxicity Testing Paradigm: Integration of the High-Throughput CometChip® and the TGx-DDI Transcriptomic Biomarker in Human HepaRG™ Cell Cultures. Front Public Health 2021; 9:694834. [PMID: 34485225 PMCID: PMC8416458 DOI: 10.3389/fpubh.2021.694834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Higher-throughput, mode-of-action-based assays provide a valuable approach to expedite chemical evaluation for human health risk assessment. In this study, we combined the high-throughput alkaline DNA damage-sensing CometChip® assay with the TGx-DDI transcriptomic biomarker (DDI = DNA damage-inducing) using high-throughput TempO-Seq®, as an integrated genotoxicity testing approach. We used metabolically competent differentiated human HepaRG™ cell cultures to enable the identification of chemicals that require bioactivation to cause genotoxicity. We studied 12 chemicals (nine DDI, three non-DDI) in increasing concentrations to measure and classify chemicals based on their ability to damage DNA. The CometChip® classified 10/12 test chemicals correctly, missing a positive DDI call for aflatoxin B1 and propyl gallate. The poor detection of aflatoxin B1 adducts is consistent with the insensitivity of the standard alkaline comet assay to bulky lesions (a shortcoming that can be overcome by trapping repair intermediates). The TGx-DDI biomarker accurately classified 10/12 agents. TGx-DDI correctly identified aflatoxin B1 as DDI, demonstrating efficacy for combined used of these complementary methodologies. Zidovudine, a known DDI chemical, was misclassified as it inhibits transcription, which prevents measurable changes in gene expression. Eugenol, a non-DDI chemical known to render misleading positive results at high concentrations, was classified as DDI at the highest concentration tested. When combined, the CometChip® assay and the TGx-DDI biomarker were 100% accurate in identifying chemicals that induce DNA damage. Quantitative benchmark concentration (BMC) modeling was applied to evaluate chemical potencies for both assays. The BMCs for the CometChip® assay and the TGx-DDI biomarker were highly concordant (within 4-fold) and resulted in identical potency rankings. These results demonstrate that these two assays can be integrated for efficient identification and potency ranking of DNA damaging agents in HepaRG™ cell cultures.
Collapse
Affiliation(s)
- Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carol D Swartz
- Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States
| | - Leslie Recio
- Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, NC, United States
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Stephen S Ferguson
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
McMullen PD, Bhattacharya S, Woods CG, Pendse SN, McBride MT, Soldatow VY, Deisenroth C, LeCluyse EL, Clewell RA, Andersen ME. Identifying qualitative differences in PPARα signaling networks in human and rat hepatocytes and their significance for next generation chemical risk assessment methods. Toxicol In Vitro 2020; 64:104463. [DOI: 10.1016/j.tiv.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
6
|
Buick JK, Williams A, Gagné R, Swartz CD, Recio L, Ferguson SS, Yauk CL. Flow cytometric micronucleus assay and TGx-DDI transcriptomic biomarker analysis of ten genotoxic and non-genotoxic chemicals in human HepaRG™ cells. Genes Environ 2020; 42:5. [PMID: 32042365 PMCID: PMC7001283 DOI: 10.1186/s41021-019-0139-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Modern testing paradigms seek to apply human-relevant cell culture models and integrate data from multiple test systems to accurately inform potential hazards and modes of action for chemical toxicology. In genetic toxicology, the use of metabolically competent human hepatocyte cell culture models provides clear advantages over other more commonly used cell lines that require the use of external metabolic activation systems, such as rat liver S9. HepaRG™ cells are metabolically competent cells that express Phase I and II metabolic enzymes and differentiate into mature hepatocyte-like cells, making them ideal for toxicity testing. We assessed the performance of the flow cytometry in vitro micronucleus (MN) test and the TGx-DDI transcriptomic biomarker to detect DNA damage-inducing (DDI) chemicals in human HepaRG™ cells after a 3-day repeat exposure. The biomarker, developed for use in human TK6 cells, is a panel of 64 genes that accurately classifies chemicals as DDI or non-DDI. Herein, the TGx-DDI biomarker was analyzed by Ion AmpliSeq whole transcriptome sequencing to assess its classification accuracy using this more modern gene expression technology as a secondary objective. Methods HepaRG™ cells were exposed to increasing concentrations of 10 test chemicals (six genotoxic chemicals, including one aneugen, and four non-genotoxic chemicals). Cytotoxicity and genotoxicity were measured using the In Vitro MicroFlow® kit, which was run in parallel with the TGx-DDI biomarker. Results A concentration-related decrease in relative survival and a concomitant increase in MN frequency were observed for genotoxic chemicals in HepaRG™ cells. All five DDI and five non-DDI agents were correctly classified (as genotoxic/non-genotoxic and DDI/non-DDI) by pairing the test methods. The aneugenic agent (colchicine) yielded the expected positive result in the MN test and negative (non-DDI) result by TGx-DDI. Conclusions This next generation genotoxicity testing strategy is aligned with the paradigm shift occurring in the field of genetic toxicology. It provides mechanistic insight in a human-relevant cell-model, paired with measurement of a conventional endpoint, to inform the potential for adverse health effects. This work provides support for combining these assays in an integrated test strategy for accurate, higher throughput genetic toxicology testing in this metabolically competent human progenitor cell line.
Collapse
Affiliation(s)
- Julie K Buick
- 1Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Andrew Williams
- 1Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Rémi Gagné
- 1Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9 Canada
| | - Carol D Swartz
- 2Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, North Carolina 27709 USA
| | - Leslie Recio
- 2Integrated Laboratory Systems Inc. (ILS), Research Triangle Park, Durham, North Carolina 27709 USA
| | - Stephen S Ferguson
- 3National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina 27709 USA
| | - Carole L Yauk
- 1Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9 Canada.,4Health Canada, Environmental Health Centre, 50 Colombine Driveway, PL 0803A, Ottawa, Ontario K1A 0K9 Canada
| |
Collapse
|
7
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
8
|
Phillips MB, Balbuena-Venancio P, Enders JR, Norini RL, Shim YS, Burgunder E, Rao L, Billings D, Pedersen J, Macdonald JM, Andersen M, Clewell HJ, Yoon M. Xenobiotic Metabolism in Alginate-Encapsulated Primary Human Hepatocytes Over Long Timeframes. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Pergentino Balbuena-Venancio
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | | | | | - Yoo-Sik Shim
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Erin Burgunder
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Lavanya Rao
- ScitoVation, LLC, Research Triangle Park, North Carolina
| | - David Billings
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jenny Pedersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jeffrey M. Macdonald
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Melvin Andersen
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Harvey J. Clewell
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
9
|
|