1
|
Guo W, Qu Y, Yu Y, Li X, Liang Z, Wang Z, Hu T, Zhou S. DKK2 promotes the progression of oral squamous cell carcinoma through the PI3K/AKT signaling pathway. Aging (Albany NY) 2024; 16:9204-9215. [PMID: 38795388 PMCID: PMC11164507 DOI: 10.18632/aging.205864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/29/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the impact of Dickkopf 2 (DKK2) on the progression of oral squamous cell carcinoma (OSCC) and explore its role in the PI3K/AKT signaling transduction pathway. MATERIALS AND METHODS The study initially examined the expression of the DKK2 gene in OSCC tissues and normal tissues. Simultaneously, the expression of DKK2 in HOK cells and OSCC cells was verified, and changes in DKK2 expression under hypoxic conditions were detected. DKK2 overexpression and knockdown were performed in SCC-15 and CAL-27 cells. Subsequently, the effects of DKK2 on the proliferation, migration and invasion of OSCC were detected. Western blotting was employed to detect the expression of key proteins in the DKK2/PI3K/AKT signaling axis before and after transfection, and further explore the relevant molecular mechanisms. RESULTS Compared to normal tissues, DKK2 expression was elevated in OSCC tissues. The expression of DKK2 in the SCC-15 and CAL-27 cell lines was higher than that in HOK cells, and hypoxic conditions could promote DKK2 expression. DKK2 overexpression promoted cell proliferation, migration, and invasion, while DKK2 knockdown inhibited these processes. DKK2 overexpression activated the PI3K/AKT pathway, while DKK2 knockdown suppressed this pathway. CONCLUSION This study suggests that hypoxic conditions enhance the expression of DKK2 in OSCC. DKK2 regulates the proliferation, migration, and invasion of OSCC through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenbo Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Yun Qu
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yang Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Xueming Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Zhuang Liang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Zhaoqi Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Tenglong Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Shan Zhou
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
2
|
Zhao X, Xie N, Zhang H, Zhou W, Ding J. Bacterial Drug Delivery Systems for Cancer Therapy: "Why" and "How". Pharmaceutics 2023; 15:2214. [PMID: 37765183 PMCID: PMC10534357 DOI: 10.3390/pharmaceutics15092214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that endanger human health. However, the use of anticancer drugs is accompanied by a series of side effects. Suitable drug delivery systems can reduce the toxic side effects of drugs and enhance the bioavailability of drugs, among which targeted drug delivery systems are the main development direction of anticancer drug delivery systems. Bacteria is a novel drug delivery system that has shown great potential in cancer therapy because of its tumor-targeting, oncolytic, and immunomodulatory properties. In this review, we systematically describe the reasons why bacteria are suitable carriers of anticancer drugs and the mechanisms by which these advantages arise. Secondly, we outline strategies on how to load drugs onto bacterial carriers. These drug-loading strategies include surface modification and internal modification of bacteria. We focus on the drug-loading strategy because appropriate strategies play a key role in ensuring the stability of the delivery system and improving drug efficacy. Lastly, we also describe the current state of bacterial clinical trials and discuss current challenges. This review summarizes the advantages and various drug-loading strategies of bacteria for cancer therapy and will contribute to the development of bacterial drug delivery systems.
Collapse
Affiliation(s)
- Xiangcheng Zhao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Nuli Xie
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
- Changsha Jingyi Pharmaceutical Technology Co., Ltd., Changsha 410006, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| |
Collapse
|
3
|
Xu X, Chen M, Zhang J, Jiang Y, Chao H, Zha J. Can the apparent transverse relaxation rate (R2 *) evaluate the efficacy of concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma? a preliminary experience. BMC Med Imaging 2023; 23:69. [PMID: 37264331 DOI: 10.1186/s12880-023-01029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The use of the apparent transverse relaxation rate (R2*) in nasopharyngeal carcinoma (NPC) has not been previously reported in the literature. The aim of this study was to investigate the role of the R2* value in evaluating response to concurrent chemoradiotherapy (CCRT) in patients with NPC. METHODS Forty-one patients with locoregionally advanced NPC confirmed by pathology were examined by blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) before and after CCRT, and conventional MRI was performed 3 months after the completion of CCRT. All patients were divided into a responding group (RG) and a nonresponding group (NRG), according to MRI findings 3 months after the end of treatment. The R2* values before (R2*preT) and after (R2*postT) CCRT and the ΔR2* (ΔR2*=R2*postT - R2*preT) were calculated in the tumor. RESULTS Among the 41 patients, 26 were in the RG and 15 were in the NRG. There was no statistical difference in the R2*preT between RG and NRG (P = 0.307); however, there were significant differences in R2*postT and ΔR2* (P < 0.001). The area under the curve of R2*postT and ΔR2* for predicting the therapeutic response of NPC was 0.897 and 0.954, respectively, with cutoff values of 40.95 and 5.50 Hz, respectively. CONCLUSION The R2* value can be used as a potential imaging indicator to evaluate the therapeutic response of locoregionally advanced NPC.
Collapse
Affiliation(s)
- Xinhua Xu
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Ming Chen
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China.
| | - Jin Zhang
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Yunzhu Jiang
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Hua Chao
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| | - Jianfeng Zha
- Department of Radiology, Changzhou Cancer Hospital of Soochow University, 68 Honghe Road, Changzhou, 213000, Jiangsu, PR China
| |
Collapse
|
4
|
Orel VB, Papazoglou ΑS, Tsagkaris C, Moysidis DV, Papadakos S, Galkin OY, Orel VE, Syvak LA. Nanotherapy based on magneto-mechanochemical modulation of tumor redox state. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1868. [PMID: 36289050 DOI: 10.1002/wnan.1868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 05/13/2023]
Abstract
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | - Christos Tsagkaris
- Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Dimitrios V Moysidis
- Department of Cardiology, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Olexander Yu Galkin
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Valerii E Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | |
Collapse
|
5
|
Schiavo F, Toma-Dasu I, Kjellsson Lindblom E. The Impact of Heterogeneous Cell Density in Hypoxic Tumors Treated with Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:121-126. [PMID: 37845450 DOI: 10.1007/978-3-031-42003-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Hypoxia is frequently found in solid tumors and is known to increase the resistance to several kinds of treatment modalities including radiation therapy. Besides, the treatment response is also largely determined by the total number of clonogenic cells, i.e., cells with unlimited proliferative capacity. Depending on the duration of hypoxia, the rate of proliferation and hence also the clonogen density could be expected to differ in hypoxic compartments. The combination at the microscale between heterogeneous tumor oxygenation and clonogen density could therefore be crucial with respect to the outcome of a radiotherapy treatment. In this study it was investigated the impact of heterogeneous clonogen density on the outcome of stereotactic radiotherapy treatments of hypoxic tumors. A recently developed three-dimensional model for tissue vasculature and oxygenation was used to create realistic in silico tumors with heterogeneous oxygenation. Stereotactic radiotherapy treatments were simulated, and cell survival was calculated on a voxel-level accounting for the oxygenation. For a tumor with a diameter of 1 cm and a baseline clonogenic density of 107/cm3 for the normoxic subvolume, when the relative density for the hypoxic cells drops by a factor of 10 the tumor control probability (TCP) decreases by about 10% when relatively small hypoxic volumes and few fractions are considered; longer treatments tend to level out the results. With increasing size of the hypoxic subvolume, the TCP decreased overall as expected, and the difference in TCP between a homogeneous and a heterogeneous distribution of cells increased. The results demonstrate a delicate interplay between the heterogeneous distribution of tumor oxygenation and clonogenic cells that could significantly impact on the treatment outcome of radiotherapy.
Collapse
Affiliation(s)
- Filippo Schiavo
- Department of Physics, Stockholm University, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden.
| | - Iuliana Toma-Dasu
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Emely Kjellsson Lindblom
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Prognostic Factors for the Efficiency of Radiation Therapy in Dogs with Oral Melanoma: A Pilot Study of Hypoxia in Intraosseous Lesions. Vet Sci 2022; 10:vetsci10010004. [PMID: 36669005 PMCID: PMC9861487 DOI: 10.3390/vetsci10010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Unresectable oral melanoma is often treated with radiation therapy (RT) and may show a temporary response to therapy. The clinical stage is one of the well-known prognostic factors for canine oral melanoma. However, the factors that directly affect the response to RT have remained unclear. This study aimed to validate the risk factors for recurrence after RT. Sixty-eight dogs with oral melanomas were included in this study. All dogs were treated with palliative RT using a linear accelerator without adjuvant therapies. After RT, the time to local recurrence (TTR) and overall survival (OS) were evaluated using the log-rank test. As a result, clinical stage and response to therapy were the significant independent prognostic factors in the multivariate analysis. The presence of local bone lysis and non-combination with cytoreductive surgery were associated with a worse response to RT. Immunohistochemical analysis for hypoxia-inducible factor-1α indicated that tumor cells invading the bone are under hypoxic conditions, which may explain a poorer efficiency of RT in dogs with bone lysis. In conclusion, clinical stage and combination with debulking surgery were needed to improve the efficiency of RT.
Collapse
|
7
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
8
|
Pangarsa E, Wuryantoro P, Naibaho R, Setiawan B, Santosa D, Istiadi H, Puspasari D, Suharti C. Preliminary study of hypoxia markers in diffuse large B‑cell lymphoma. Mol Clin Oncol 2022; 17:140. [PMID: 35949890 PMCID: PMC9353874 DOI: 10.3892/mco.2022.2573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
While the association of hypoxia has been established in various types of solid cancers, little is known about its presence and existence in diffuse large B-cell lymphoma (DLBCL). The purpose of the present study was to evaluate the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGF-A) in DLBCL and to analyze the association of these factors with several clinical and pathological characteristics. The immunohistochemical protein expression of HIF-1α and VEGF-A was investigated in 34 de novo DLBCL tumor samples from January 2017 to December 2017 from the Department of Hematology/Medical Oncology and Anatomical Pathology at Dr Kariadi Hospital (Semarang, Indonesia). The present study revealed by using immunohistochemistry (IHC), that hypoxic markers were overexpressed (88.2% for both HIF-1α and VEGF-A) in the vast majority of patients with DLBCL. Only in 4 tumors, was HIF-1α expression normal, and interestingly VEGF-A was negative as well. There was a significant correlation in the intensity of staining of HIF-1α and VEGF-A using our custom scoring system in surgically resected tissues (r=0.475; P=0.005). Both HIF-1α and VEGF-A were also associated to serum LDH and tumor diameter. Collectively, HIF-1α and VEGF-A were predominantly expressed in the majority of DLBCL tumor cells. The findings of the present study indicate the existence of hypoxia in DLBCL tumors similar to numerous solid cancers, and thus warrants further investigation to clarify its role as a potential pathogenic or prognostic marker in this type of hematological cancer.
Collapse
Affiliation(s)
- Eko Pangarsa
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University, Dr Kariadi Hospital, Semarang, Central Java 50244, Indonesia
| | - Probo Wuryantoro
- Department of Medicine, Palangkaraya Hospital, Palangkaraya, Central Kalimantan 73111, Indonesia
| | - Ridho Naibaho
- Department of Hematology/Medical Oncology, A. M. Parikesit Hospital and A. W. Sjahranie Hospital, Mulawarman School of Medicine, Samarinda, East Kalimantan 75123, Indonesia
| | - Budi Setiawan
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University, Dr Kariadi Hospital, Semarang, Central Java 50244, Indonesia
| | - Damai Santosa
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University, Dr Kariadi Hospital, Semarang, Central Java 50244, Indonesia
| | - Hermawan Istiadi
- Department of Anatomical Pathology, Dr Kariadi Hospital, Semarang, Central Java 50244, Indonesia
| | - Dik Puspasari
- Department of Anatomical Pathology, Dr Kariadi Hospital, Semarang, Central Java 50244, Indonesia
| | - Catharina Suharti
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University, Dr Kariadi Hospital, Semarang, Central Java 50244, Indonesia
| |
Collapse
|
9
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
10
|
Hypoxia responsive and tumor-targeted mixed micelles for enhanced cancer therapy and real-time imaging. Colloids Surf B Biointerfaces 2022; 215:112526. [PMID: 35512561 DOI: 10.1016/j.colsurfb.2022.112526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Most chemotherapy agents have serious side effects due to lack of tumor targeting, which affects their clinical application. In addition, as an essential characteristic of malignant tumor, hypoxia is attracting exclusive research focus regarding its non-invasive real-time tracing in novel targeting delivery system. Herein, we designed a mixed micelle with tumor targeting and hypoxia responsiveness for tumor therapy and imaging. In particular, the dual-modified mix micelles were self-assembled by folic acid (FA) and 2-(2-nitroimidazole) ethylamine (NI) conjugated polymers, in which paclitaxel (PTX) and quantum dots (QDs) were co-loaded into the hydrophobic core. The drug loaded micelles showed satisfactory drug encapsulation, good storage stability, and sustained release properties. In vitro cell experiments showed that the mixed micelles exhibited enhanced cytotoxic effect and improved the cellular uptake, especially under hypoxic conditions, which was due to the FA mediated active targeting effect and NI induced hypoxic responsive release. In vivo experiments further proved that the mixed micelles possessed outstanding tumor targeting and hypoxia responsive properties. Furthermore, the drug loaded micelles showed excellent anti-tumor effect and can realize real-time in vivo imaging. This work demonstrates that the dual-modified mixed micelles co-loading with PTX and QDs might provide a novel approach for tumor therapy and imaging.
Collapse
|
11
|
Zhao Z, Liu Z, Hua Y, Pan Y, Yi G, Wu S, He C, Zhang Y, Yang Y. Biomimetic ZIF8 Nanosystem With Tumor Hypoxia Relief Ability to Enhance Chemo-Photothermal Synergistic Therapy. Front Pharmacol 2022; 13:850534. [PMID: 35401170 PMCID: PMC8988193 DOI: 10.3389/fphar.2022.850534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Tumor hypoxic microenvironment can reduce the therapeutic effects of chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, etc. It is also a potential source of tumor recurrence and metastasis. A biomimetic nanosystem based on zeolitic imidazolate framework 8 (ZIF8), which had multifunctions of hypoxia relief, chemotherapy, and photothermal therapy, was established to improve tumor hypoxic microenvironment and overcome the corresponding therapeutic resistance. ZIF8 enveloped with DOX and CuS nanoparticles (DC@ZIF8) was synthesized by a sedimentation method. Red blood cell membrane and catalase (CAT) were coated onto DC@ZIF8 and biomimetic nanosystem (DC@ZIF8-MEMC) was formed. The designed DC@ZIF8-MEMC had a shape of polyhedron with an average particle size around 254 nm. The loading content of DOX, CAT, and CuS was 4.9%, 6.2%, and 2.5%, separately. The release of DOX from DC@ZIF8-MEMC was pH dependent and significantly faster at pH 5 due to the degradation of ZIF8. DC@ZIF8-MEMC exhibited outstanding photothermal conversion properties and excellent antitumor effect in vitro and in vivo. Moreover, the hypoxia relief by CAT was proved to have good sensitization effect on chemo-photothermal combined therapy. DC@ZIF8-MEMC is a prospective nanosystem, which can realize great chemo-photothermal synergistic antitumor effect under the sensitization of CAT. The biomimetic multifunctional nanoplatform provides a potential strategy of chemo-photothermal synergistic antitumor effect under the sensitization of CAT.
Collapse
Affiliation(s)
- Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhaorong Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yabing Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuanjie Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ge Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shengyue Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Cong He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yanzhuo Zhang, ; Yihua Yang,
| | - Yihua Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yanzhuo Zhang, ; Yihua Yang,
| |
Collapse
|
12
|
Huo Z, Bilang R, Supuran CT, von der Weid N, Bruder E, Holland-Cunz S, Martin I, Muraro MG, Gros SJ. Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma. Int J Mol Sci 2022; 23:ijms23063128. [PMID: 35328549 PMCID: PMC8955558 DOI: 10.3390/ijms23063128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a rare disease. Rare are also the possibilities to test new therapeutic options for neuroblastoma in clinical trials. Despite the constant need to improve therapy and outcomes for patients with advanced neuroblastoma, clinical trials currently only allow for testing few substances in even fewer patients. This increases the need to improve and advance preclinical models for neuroblastoma to preselect favorable candidates for novel therapeutics. Here we propose the use of a new patient-derived 3D slice-culture perfusion-based 3D model in combination with rapid treatment evaluation using isothermal microcalorimetry exemplified with treatment with the novel carbonic anhydrase IX and XII (CAIX/CAXII) inhibitor SLC-0111. Patient samples showed a CAIX expression of 18% and a CAXII expression of 30%. Corresponding with their respective CAIX expression patterns, the viability of SH-EP cells was significantly reduced upon treatment with SLC-0111, while LAN1 cells were not affected. The inhibitory effect on SH-SY5Y cells was dependent on the induction of CAIX expression under hypoxia. These findings corresponded to thermogenesis of the cells. Patient-derived organotypic slice cultures were treated with SLC-0111, which was highly effective despite heterogeneity of CAIX/CAXII expression. Thermogenesis, in congruence with the findings of the histological observations, was significantly reduced in SLC-0111-treated samples. In order to extend the evaluation time, we established a perfusion-based approach for neuroblastoma tissue in a 3D perfusion-based bioreactor system. Using this system, excellent tissue quality with intact tumor cells and stromal structure in neuroblastoma tumors can be maintained for 7 days. The system was successfully used for consecutive drug response monitoring with isothermal microcalorimetry. The described approach for drug testing, relying on an advanced 3D culture system combined with a rapid and highly sensitive metabolic assessment, can facilitate development of personalized treatment strategies for neuroblastoma.
Collapse
Affiliation(s)
- Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (S.H.-C.)
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland;
| | - Remo Bilang
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (S.H.-C.)
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland;
| | - Claudiu T. Supuran
- Department Neurofarba, Sezione di Scienze Farmaceutiche, University of Florence, 50121 Florence, Italy;
| | - Nicolas von der Weid
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland;
- Department of Hematology and Oncology, University Children’s Hospital Basel, 4031 Basel, Switzerland
| | - Elisabeth Bruder
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (S.H.-C.)
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland;
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland; (I.M.); (M.G.M.)
| | - Manuele G. Muraro
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland; (I.M.); (M.G.M.)
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (S.H.-C.)
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland;
- Correspondence:
| |
Collapse
|
13
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
14
|
Marchetti A, Rosellini M, Rizzo A, Mollica V, Battelli N, Massari F, Santoni M. An up-to-date evaluation of cabozantinib for the treatment of renal cell carcinoma. Expert Opin Pharmacother 2021; 22:2323-2336. [PMID: 34405738 DOI: 10.1080/14656566.2021.1959548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: In the evolving treatment scenario of metastatic renal cell carcinoma, cabozantinib is gaining increasing attention, presenting as a cornerstone therapy, both as a monotherapy and in combination with immune-checkpoint inhibitors.Areas covered: In this review, the authors explore the role of cabozantinib in the treatment of metastatic clear cell and non-clear cell renal cell carcinoma, presenting data from the most recent clinical trials and investigating ongoing studies. They, furthermore, evaluate the pharmacokinetic, pharmacodynamic, and immunomodulatory effect of cabozantinib, as well as underlining the tolerability profile and patients' quality of life.Expert opinion: Cabozantinib's administration as a single agent is restricted to intermediate- and poor-risk patients (according to IMDC criteria). The further advent of anti-VEGF-receptor tyrosine kinase inhibitors combined with immune checkpoint inhibitor regimens (such as pembrolizumab + axitinib) has allowed to expand the use of cabozantinib, leading to its combination with nivolumab. In the next few years, more information is required to look for the application of cabozantinib-based combinations as a later-line approach in metastatic RCC patients, beside their use in the first-line setting.
Collapse
Affiliation(s)
- Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | |
Collapse
|
15
|
Marchetti A, Rosellini M, Mollica V, Rizzo A, Tassinari E, Nuvola G, Cimadamore A, Santoni M, Fiorentino M, Montironi R, Massari F. The Molecular Characteristics of Non-Clear Cell Renal Cell Carcinoma: What's the Story Morning Glory? Int J Mol Sci 2021; 22:6237. [PMID: 34207825 PMCID: PMC8226484 DOI: 10.3390/ijms22126237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/05/2023] Open
Abstract
Non-clear cell renal cell carcinomas are a miscellaneous group of tumors that include different histological subtypes, each one characterized by peculiarity in terms of genetic alteration, clinical behavior, prognosis, and treatment response. Because of their low incidence and poor enrollment in clinical trials, alongside their heterogeneity, additional efforts are required to better unveil the pathogenetic mechanisms and, consequently, to improve the treatment algorithm. Nowadays, tyrosine kinase inhibitors, mTOR and MET inhibitors, and even cisplatin-based chemotherapy and immunotherapy are potential weapons that are still under evaluation in this setting. Various biomarkers have been evaluated for detecting progression and monitoring renal cell carcinoma, but more studies are necessary to improve this field. In this review, we provide an overview on the molecular characteristics of this group of tumors and the recently published trials, giving an insight into what might become the future therapeutic standard in this complex world of non-clear cell kidney cancers.
Collapse
Affiliation(s)
- Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| | - Giacomo Nuvola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Michelangelo Fiorentino
- Department of Specialistic Diagnostic and Experimental Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy; (A.M.); (M.R.); (V.M.); (A.R.); (E.T.); (G.N.)
| |
Collapse
|
16
|
Fang H, Gai Y, Wang S, Liu Q, Zhang X, Ye M, Tan J, Long Y, Wang K, Zhang Y, Lan X. Biomimetic oxygen delivery nanoparticles for enhancing photodynamic therapy in triple-negative breast cancer. J Nanobiotechnology 2021; 19:81. [PMID: 33743740 PMCID: PMC7981819 DOI: 10.1186/s12951-021-00827-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a kind of aggressive breast cancer with a high rate of metastasis, poor overall survival time, and a low response to targeted therapies. To improve the therapeutic efficacy and overcome the drug resistance of TNBC treatments, here we developed the cancer cell membrane-coated oxygen delivery nanoprobe, CCm-HSA-ICG-PFTBA, which can improve the hypoxia at tumor sites and enhance the therapeutic efficacy of the photodynamic therapy (PDT), resulting in relieving the tumor growth in TNBC xenografts. RESULTS The size of the CCm-HSA-ICG-PFTBA was 131.3 ± 1.08 nm. The in vitro 1O2 and ROS concentrations of the CCm-HSA-ICG-PFTBA group were both significantly higher than those of the other groups (P < 0.001). In vivo fluorescence imaging revealed that the best time window was at 24 h post-injection of the CCm-HSA-ICG-PFTBA. Both in vivo 18F-FMISO PET imaging and ex vivo immunofluorescence staining results exhibited that the tumor hypoxia was significantly improved at 24 h post-injection of the CCm-HSA-ICG-PFTBA. For in vivo PDT treatment, the tumor volume and weight of the CCm-HSA-ICG-PFTBA with NIR group were both the smallest among all the groups and significantly decreased compared to the untreated group (P < 0.01). No obvious biotoxicity was observed by the injection of CCm-HSA-ICG-PFTBA till 14 days. CONCLUSIONS By using the high oxygen solubility of perfluorocarbon (PFC) and the homologous targeting ability of cancer cell membranes, CCm-HSA-ICG-PFTBA can target tumor tissues, mitigate the hypoxia of the tumor microenvironment, and enhance the PDT efficacy in TNBC xenografts. Furthermore, the HSA, ICG, and PFC are all FDA-approved materials, which render the nanoparticles highly biocompatible and enhance the potential for clinical translation in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Sheng Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Min Ye
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jianling Tan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Kuanyin Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
17
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Cetuximab-Mediated Protection from Hypoxia- Induced Cell Death: Implications for Therapy Sequence in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12103050. [PMID: 33092032 PMCID: PMC7589936 DOI: 10.3390/cancers12103050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Therapeutic antibodies are an integral part of treatment regimens for metastasized colorectal cancer. In KRAS wildtype tumors both bevacizumab and cetuximab are active. While bevacizumab has previously been shown to induce tumor hypoxia, we here report that EGFR inhibition by cetuximab protects colon cancer cells from hypoxia-induced cell death. This effect appears to be responsible for the inferior efficacy of a treatment sequence of bevacizumab followed by cetuximab versus an inverse sequence that we observed in a colorectal cancer mouse model. It also offers a mechanistic explanation for effects observed in clinical trials such as underadditive or even detrimental effects when combining bevacizumab and cetuximab (CAIRO2 trial) and the superior efficacy of first line cetuximab (FIRE-3 trial) under chemotherapy backbones in colorectal cancer. Abstract Monoclonal antibodies like cetuximab, targeting the epidermal growth factor receptor (EGFR), and bevacizumab, targeting the vascular endothelial growth factor (VEGF), are an integral part of treatment regimens for metastasized colorectal cancer. However, inhibition of the EGFR has been shown to protect human glioma cells from cell death under hypoxic conditions. In colon carcinoma cells, the consequences of EGFR blockade in hypoxia (e.g., induced by bevacizumab) have not been evaluated yet. LIM1215 and SW948 colon carcinoma and LNT-229 glioblastoma cells were treated with cetuximab, PD153035, and erlotinib and analyzed for cell density and viability. The sequential administration of either cetuximab followed by bevacizumab (CET->BEV) or bevacizumab followed by cetuximab (BEV->CET) was investigated in a LIM1215 (KRAS wildtype) and SW948 (KRAS mutant) xenograft mouse model. In vitro, cetuximab protected from hypoxia. In the LIM1215 model, a survival benefit with cetuximab and bevacizumab monotherapy was observed, but only the sequence CET->BEV showed an additional benefit. This effect was confirmed in the SW948 model. Our observations support the hypothesis that bevacizumab modulates the tumor microenvironment (e.g., by inducing hypoxia) where cetuximab could trigger protective effects when administered later on. The sequence CET->BEV therefore seems to be superior as possible mutual adverse effects are bypassed.
Collapse
|
19
|
Swartz HM, Flood AB, Schaner PE, Halpern H, Williams BB, Pogue BW, Gallez B, Vaupel P. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Physiol Rep 2020; 8:e14541. [PMID: 32786045 PMCID: PMC7422807 DOI: 10.14814/phy2.14541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
It is well understood that the level of molecular oxygen (O2 ) in tissue is a very important factor impacting both physiology and pathological processes as well as responsiveness to some treatments. Data on O2 in tissue could be effectively utilized to enhance precision medicine. However, the nature of the data that can be obtained using existing clinically applicable techniques is often misunderstood, and this can confound the effective use of the information. Attempts to make clinical measurements of O2 in tissues will inevitably provide data that are aggregated over time and space and therefore will not fully represent the inherent heterogeneity of O2 in tissues. Additionally, the nature of existing techniques to measure O2 may result in uneven sampling of the volume of interest and therefore may not provide accurate information on the "average" O2 in the measured volume. By recognizing the potential limitations of the O2 measurements, one can focus on the important and useful information that can be obtained from these techniques. The most valuable clinical characterizations of oxygen are likely to be derived from a series of measurements that provide data about factors that can change levels of O2 , which then can be exploited both diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2 .
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Ann Barry Flood
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | - Philip E Schaner
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Howard Halpern
- Department Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Benjamin B Williams
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Bernard Gallez
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Peter Vaupel
- Department Radiation Oncology, University Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Center Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Carbonic Anhydrase Inhibitor Acetazolamide Enhances CHOP Treatment Response and Stimulates Effector T-Cell Infiltration in A20/BalbC Murine B-Cell Lymphoma. Int J Mol Sci 2020; 21:ijms21145001. [PMID: 32679833 PMCID: PMC7403988 DOI: 10.3390/ijms21145001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The inhibition of cancer-related carbonic anhydrase (CA) activity is a promising way to intensify anti-tumor responses. In vitro data suggest improved efficacy of cytotoxic drugs in combination with CA-inhibitors in several cancer types. Despite accumulating data on CA-expression, experimental or clinical studies towards B-cell lymphoma therapy are missing. We therefore decided to test the effect of the CA-inhibitor acetazolamide (AA) on the conventional CHOP treatment regimen using the A20/BalbC in vivo syngeneic mouse lymphoma model. Tumor growth characteristics, 18F-MISO-PET activity, histomorphology, cell proliferation, and T-cell immune infiltrate were determined following single or multiple dose combinations. All results point to a significant increase in the anti-tumor effect of CHOP+AA combinations compared with the untreated controls or with the single CHOP or AA treatments. CD3+ and CD8+ T-cell immune infiltrate increased 3–4 times following CHOP+AA combination compared with the classical CHOP protocol. In conclusion, CA-inhibitor AA seems to act synergistically with the anti-tumor treatment CHOP in aggressive lymphoma. Further to a cytotoxic effect, AA and other more selective blockers potentially support tumor-associated immune responses through the modification of the microenvironment. Therefore, CA-inhibitors are promising candidates as adjuvants in support of specific immunotherapies in lymphoma and other malignancies.
Collapse
|
21
|
Cao‐Pham T, Tran‐Ly‐Binh A, Heyerick A, Fillée C, Joudiou N, Gallez B, Jordan BF. Combined endogenous MR biomarkers to assess changes in tumor oxygenation induced by an allosteric effector of hemoglobin. NMR IN BIOMEDICINE 2020; 33:e4181. [PMID: 31762121 PMCID: PMC7003919 DOI: 10.1002/nbm.4181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is a crucial factor in cancer therapy, determining prognosis and the effectiveness of treatment. Although efforts are being made to develop methods for assessing tumor hypoxia, no markers of hypoxia are currently used in routine clinical practice. Recently, we showed that the combined endogenous MR biomarkers, R1 and R2 *, which are sensitive to [dissolved O2 ] and [dHb], respectively, were able to detect changes in tumor oxygenation induced by a hyperoxic breathing challenge. In this study, we further validated the ability of the combined MR biomarkers to assess the change in tumor oxygenation induced by an allosteric effector of hemoglobin, myo-inositol trispyrophosphate (ITPP), on rat tumor models. ITPP induced an increase in tumor pO2 , as observed using L-band electron paramagnetic resonance oximetry, as well as an increase in both R1 and R2 * MR parameters. The increase in R1 indicated an increase in [O2 ], whereas the increase in R2 * resulted from an increase in O2 release from blood, inducing an increase in [dHb]. The impact of ITPP was then evaluated on factors that can influence tumor oxygenation, including tumor perfusion, saturation rate of hemoglobin, blood pH and oxygen consumption rate (OCR). ITPP decreased blood [HbO2 ] and significantly increased blood acidity, which is also a factor that right-shifts the oxygen dissociation curve. No change in tumor perfusion was observed after ITPP treatment. Interestingly, ITPP decreased OCR in both tumor cell lines. In conclusion, ITPP increased tumor pO2 via a combined mechanism involving a decrease in OCR and an allosteric effect on hemoglobin that was further enhanced by a decrease in blood pH. MR biomarkers could assess the change in tumor oxygenation induced by ITPP. At the intra-tumoral level, a majority of tumor voxels were responsive to ITPP treatment in both of the models studied.
Collapse
Affiliation(s)
- Thanh‐Trang Cao‐Pham
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - An Tran‐Ly‐Binh
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | | | - Catherine Fillée
- Institut de Recherche Expérimentale et Clinique (IREC), UCLouvainUniversite catholique de LouvainBrusselsBelgium
| | - Nicolas Joudiou
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research GroupUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
22
|
Dean GE, Weiss C, Jungquist CR, Klimpt ML, Alameri R, Ziegler PA, Steinbrenner LM, Dexter EU, Dhillon SS, Lucke JF, Dickerson SS. Nurse-Delivered Brief Behavioral Treatment for Insomnia in Lung Cancer Survivors: A Pilot RCT. Behav Sleep Med 2020; 18:774-786. [PMID: 31672070 PMCID: PMC7190424 DOI: 10.1080/15402002.2019.1685523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective/Background: Insomnia occurs in 50 to 80% of lung cancer survivors. Cognitive behavioral therapy is the standard treatment for insomnia (CBTI); however, treatment length and lack of psychologists trained in CBTI limits access. Brief Behavioral Treatment for Insomnia (BBTI), a nurse-delivered modified CBTI, is proposed. This feasibility pilot study sought to compare the BBTI intervention to attention control Healthy Eating Program (HEP) for insomnia in lung cancer survivors. Participants: The participants comprised adults, 21 years of age or older with insomnia and stage I/II non-small cell lung cancer, more than 6 weeks from surgery and living in Western NY. Methods: Participants (n = 40) were randomly assigned to an experimental (BBTI) or attention control condition (Healthy Eating Program). Thirty participants completed the study. Results: Participants were 66 years of age (± 7.6; range 53-82), 40% (n = 16) male, 87.5% (n = 35) Caucasian, 50% (n = 20) married, BMI 27.7 (± 5.8), and 12% (n = 5) never smokers. Baseline sleep diary sleep efficiency, ISI and other baseline covariates were balanced between the groups. Sleep efficiency improved ≥85% in BBTI group (p = .02), but not in HEP control group (p = 1.00). Mean ISI for BBTI and attention control were 6.40 ± 4.98 and 14.10 ± 4.48 (p = .001) respectively. In addition, BBTI group mean total FACT-L score improved by 6.66 points from baseline while HEP group score worsened (p = .049). Conclusions: BBTI is a practical, evidence-based, clinically relevant intervention that improved sleep and quality of life in lung cancer survivors with insomnia. Additional research to evaluate efficacy, duration, and implementation strategies are essential.
Collapse
Affiliation(s)
- Grace E. Dean
- University at Buffalo, State University of New York, School
of Nursing, Buffalo, NY
| | - Carleara Weiss
- University at Buffalo, State University of New York, School
of Nursing, Buffalo, NY
| | - Carla R. Jungquist
- University at Buffalo, State University of New York, School
of Nursing, Buffalo, NY
| | - Michelle L. Klimpt
- University at Buffalo, State University of New York, School
of Nursing, Buffalo, NY
| | - Rana Alameri
- Department of Fundamental Nursing, College Nursing, Imam
Abdulrahman Bin Faisal University, Saudi Arabia
| | | | - Lynn M. Steinbrenner
- Jacobs School of Medicine, Buffalo, NY,VA Western New York Health Systems and Department of
Medicine, Buffalo, NY
| | - Elisabeth U. Dexter
- Jacobs School of Medicine, Buffalo, NY,Thoracic Oncology, Roswell Park Cancer Institute, Buffalo,
NY
| | - Samjot S. Dhillon
- Jacobs School of Medicine, Buffalo, NY,Thoracic Oncology, Roswell Park Cancer Institute, Buffalo,
NY
| | | | | |
Collapse
|
23
|
Swartz HM, Vaupel P, Williams BB, Schaner PE, Gallez B, Schreiber W, Ali A, Flood AB. 'Oxygen Level in a Tissue' - What Do Available Measurements Really Report? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:145-153. [PMID: 31893405 DOI: 10.1007/978-3-030-34461-0_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the paper is to discuss what currently is feasible clinically to measure the level of oxygen and how that measurement can be clinically useful. Because oxygen in tissues is quite heterogeneous and all methods of measurement can only provide an average across heterogeneities at some spatial and temporal resolution, the values that are obtained may have limitations on their clinical utility. However, even if such limitations are significant, if one utilizes repeated measurements and focuses on changes in the measured levels, rather than 'absolute levels', it may be possible to obtain very useful clinical information. While these considerations are especially pertinent in cancer, they also pertain to most other types of pathology.
Collapse
Affiliation(s)
- H M Swartz
- Department Radiology, Dartmouth Medical School, Hanover, NH, USA. .,Section Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - P Vaupel
- Department Radiation Oncology, University Medical Center, Mainz, Germany
| | - B B Williams
- Department Radiology, Dartmouth Medical School, Hanover, NH, USA.,Section Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - P E Schaner
- Section Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - B Gallez
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - W Schreiber
- Department Radiology, Dartmouth Medical School, Hanover, NH, USA
| | - A Ali
- Department Radiation Oncology, Emory School of Medicine, Atlanta, GA, USA
| | - A B Flood
- Department Radiology, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
24
|
Liver Cancer Cell Lines Treated with Doxorubicin under Normoxia and Hypoxia: Cell Viability and Oncologic Protein Profile. Cancers (Basel) 2019; 11:cancers11071024. [PMID: 31330834 PMCID: PMC6678640 DOI: 10.3390/cancers11071024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is often treated with a combination of doxorubicin and embolization, exposing it to high concentrations and hypoxia. Separation of the possible synergistic effect of this combination in vivo is difficult. Here, treatment with doxorubicin, under hypoxia or normoxia in different liver cancer cell lines, was evaluated. Liver cancer cells HepG2, Huh7, and SNU449 were exposed to doxorubicin, hypoxia, or doxorubicin + hypoxia with different duration. Treatment response was evaluated with cell viability, apoptosis, oxidative stress, and summarized with IC50. The protein profile of a 92-biomarker panel was analyzed on cells treated with 0 or 0.1 µM doxorubicin during 6 or 72 h, under normoxia or hypoxia. Hypoxia decreased viability of HepG2 and SNU499. HepG2 was least and SNU449 most tolerant to doxorubicin treatment. Cytotoxicity of doxorubicin increased over time in HepG2 and Huh7. The combination of doxorubicin + hypoxia affected the cells differently. Normalized protein expression was lower for HepG2 than Huh7 and SNU449. Hierarchical clustering separated HepG2 from Huh7 and SNU449. These three commonly used cell lines have critically different responses to chemotherapy and hypoxia, which was reflected in their different protein expression profile. These different responses suggest that tumors can respond differently to the combination of local chemotherapy and embolization.
Collapse
|
25
|
Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol 2018; 95:408-426. [PMID: 29913092 DOI: 10.1080/09553002.2018.1490041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anaerobic metabolism of glucose by cancer cells, even under well-oxygenated conditions, has been documented by Otto Warburg as early as 1927. Micro-environmental hypoxia and intracellular pathways activating the hypoxia-related gene response, shift cancer cell metabolism to anaerobic pathways. In the current review, we focus on a major enzyme involved in anaerobic transformation of pyruvate to lactate, namely lactate dehydrogenase 5 (LDH5). The value of LDH5 as a marker of prognosis of cancer patients, as a predictor of response to radiotherapy (RT) and chemotherapy and, finally, as a major target for cancer treatment and radio-sensitization is reported and discussed. Clinical, translational and experimental data supporting the uniqueness of the LDHA gene and its product LDH5 isoenzyme are summarized and future directions for a metabolic treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Michael I Koukourakis
- a Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| | - Alexandra Giatromanolaki
- b Department of Pathology , Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| |
Collapse
|
26
|
Mikalsen SG, Mikalsen LTG, Sandvik JA, Aarnes EK, Fenne S, Flatmark K, Lyng H, Edin NFJ, Pettersen EO. Low dose-rate irradiation with [ 3H]-labelled valine to selectively target hypoxic cells in a human colorectal cancer xenograft model. Acta Oncol 2018; 57:1216-1224. [PMID: 29630428 DOI: 10.1080/0284186x.2018.1457223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Earlier in vitro studies show that irradiation with an ultra-low dose-rate of 15 mGy/h delivered with [3H]-valine leads to loss of clonogenicity in hypoxic T-47D cells. Here, the aim was to determine if [3H]-valine could be used to deliver low dose-rate irradiation in a colorectal cancer model. METHODS Clonogenicity was measured in cultured cancer cell line HT29 irradiated with 15 mGy/h combined with intermittent hypoxia. Mice with HT29 xenografts were irradiated by repeated injections of [3H]-valine intravenously. The activity in the tumor tissue was measured by scintillation counting and tumor growth, hypoxic fraction and tritium distribution within tumors were assessed by pimonidazole staining and autoradiography. RESULTS Ultra-low dose-rate irradiation decreased clonogenicity in hypoxic colorectal cancer cells. In vivo, the tumor growth, hypoxic fraction and weight of the mice were similar between the treated and untreated group. Autoradiography showed no [3H]-valine uptake in hypoxic tumor regions in contrast to aerobic tissue. CONCLUSION Continuous low-dose-rate irradiation was well tolerated by aerobic tissue. This indicates a potential use of low dose-rate irradiation to target hypoxic tumor cells in combination with high dose-rate irradiation to eradicate the well oxygenated tumor regions. However, [3H]-valine is not the appropriate method to deliver ultra-low dose-rate irradiation in vivo.
Collapse
Affiliation(s)
- Stine Gyland Mikalsen
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Siri Fenne
- Department of Physics, University of Oslo, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumour Biology, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
27
|
Arends J, Baracos V, Bertz H, Bozzetti F, Calder PC, Deutz NEP, Erickson N, Laviano A, Lisanti MP, Lobo DN, McMillan DC, Muscaritoli M, Ockenga J, Pirlich M, Strasser F, de van der Schueren M, Van Gossum A, Vaupel P, Weimann A. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr 2017; 36:1187-1196. [PMID: 28689670 DOI: 10.1016/j.clnu.2017.06.017] [Citation(s) in RCA: 760] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Patients with cancer are at particularly high risk for malnutrition because both the disease and its treatments threaten their nutritional status. Yet cancer-related nutritional risk is sometimes overlooked or under-treated by clinicians, patients, and their families. The European Society for Clinical Nutrition and Metabolism (ESPEN) recently published evidence-based guidelines for nutritional care in patients with cancer. In further support of these guidelines, an ESPEN oncology expert group met for a Cancer and Nutrition Workshop in Berlin on October 24 and 25, 2016. The group examined the causes and consequences of cancer-related malnutrition, reviewed treatment approaches currently available, and built the rationale and impetus for clinicians involved with care of patients with cancer to take actions that facilitate nutrition support in practice. The content of this position paper is based on presentations and discussions at the Berlin meeting. The expert group emphasized 3 key steps to update nutritional care for people with cancer: (1) screen all patients with cancer for nutritional risk early in the course of their care, regardless of body mass index and weight history; (2) expand nutrition-related assessment practices to include measures of anorexia, body composition, inflammatory biomarkers, resting energy expenditure, and physical function; (3) use multimodal nutritional interventions with individualized plans, including care focused on increasing nutritional intake, lessening inflammation and hypermetabolic stress, and increasing physical activity.
Collapse
Affiliation(s)
- J Arends
- Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - V Baracos
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - H Bertz
- Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Bozzetti
- Faculty of Medicine, University of Milan, Milan, Italy
| | - P C Calder
- Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - N E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - N Erickson
- Comprehensive Cancer Center, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - A Laviano
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - M P Lisanti
- Department of Translational Medicine, University of Salford, Salford, UK
| | - D N Lobo
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - D C McMillan
- Department of Surgical Science, University of Glasgow, Glasgow, UK
| | - M Muscaritoli
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - J Ockenga
- Department of Gastroenterology, Endocrinology and Clinical Nutrition, Klinikum Bremen Mitte, Bremen, Germany
| | - M Pirlich
- Department of Internal Medicine, Elisabeth Protestant Hospital, Berlin, Germany
| | - F Strasser
- Department Internal Medicine and Palliative Care Centre, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - M de van der Schueren
- Department of Nutrition and Dietetics, VU University Medical Center, Amsterdam, The Netherlands; Department of Nutrition and Health, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - A Van Gossum
- Gastroenterology Service, Hôpital Erasme, University Hospitals of Brussels, Brussels, Belgium
| | - P Vaupel
- Department of Radiation Oncology and Radiotherapy, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - A Weimann
- Department of General, Visceral, and Oncological Surgery, Hospital St Georg, Leipzig, Germany
| |
Collapse
|
28
|
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 2017; 18:ijms18071586. [PMID: 28754000 PMCID: PMC5536073 DOI: 10.3390/ijms18071586] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.
Collapse
|
29
|
Biete A, Holub K. Haemoglobin monitoring in endometrial cancer patients undergoing radiotherapy. Clin Transl Oncol 2017; 19:1518-1523. [DOI: 10.1007/s12094-017-1698-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
|
30
|
Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW. Imaging Mass Cytometry. Cytometry A 2017; 91:160-169. [PMID: 28160444 DOI: 10.1002/cyto.a.23053] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
Abstract
Imaging Mass Cytometry (IMC) is an expansion of mass cytometry, but rather than analyzing single cells in suspension, it uses laser ablation to generate plumes of particles that are carried to the mass cytometer by a stream of inert gas. Images reconstructed from tissue sections scanned by IMC have a resolution comparable to light microscopy, with the high content of mass cytometry enabled through the use of isotopically labeled probes and ICP-MS detection. Importantly, IMC can be performed on paraffin-embedded tissue sections, so can be applied to the retrospective analysis of patient cohorts whose outcome is known, and eventually to personalized medicine. Since the original description in 2014, IMC has evolved rapidly into a commercial instrument of unprecedented power for the analysis of histological sections. In this Review, we discuss the underlying principles of this new technology, and outline emerging applications of IMC in the analysis of normal and pathological tissues. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Qing Chang
- Fluidigm Canada Inc., Markham, Ontario, L3R 4G5, Canada
| | | | - Iram Siddiqui
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | - David W Hedley
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, M5G 2M9, Canada
| |
Collapse
|
31
|
Affiliation(s)
- Qing Chang
- Fluidigm Canada Inc.; Markham Ontario L3R 4G5 Canada
| | | | - Iram Siddiqui
- Department of Pathology; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
| | | | | | - David W. Hedley
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto Ontario M5G 2M9 Canada
| |
Collapse
|