1
|
Zike AB, Abel MG, Fleck SA, DeWitt ED, Weaver LN. Estrogen-related receptor is required in adult Drosophila females for germline stem cell maintenance. Dev Biol 2025; 524:132-143. [PMID: 40348318 DOI: 10.1016/j.ydbio.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Adult tissue function is dependent on intrinsic factors that mediate stem cell self-renewal and proliferation in response to changes in physiology and the environment. The estrogen-related receptor (ERR) subfamily of orphan nuclear receptors are major transcriptional regulators of metabolism and animal physiology. In mammals, ERRs (NR3B1, NR3B2, NR3B3) have roles in regulating mitochondrial biosynthesis, lipid metabolism, as well as stem cell maintenance. The sole Drosophila ERR ortholog promotes larval growth by establishing a metabolic state during the latter half of embryogenesis. In addition, ERR is required in adult Drosophila males to coordinate glycolytic metabolism with lipid synthesis and within the testis to regulate spermatogenesis gene expression and fertility. Despite extensive work characterizing the role of ERR in Drosophila metabolism, whether ERR has a conserved requirement in regulating stem cell behavior has been understudied. To determine whether ERR regulates stem cell activity in Drosophila, we used the established adult female germline stem cell (GSC) lineage as a model. We found that whole-body ERR knockout in adult females using conditional heat shock-driven FLP-FRT recombination significantly decreases GSC number and glycolytic enzyme expression in GSCs. In addition, we found that ERR activity is required cell-autonomously in the adult female germline for maintenance of GSCs; whereas ERR regulation of GSCs is independent of its activity in adult female adipocytes. Our results highlight an ancient and conserved role for ERRs in the regulation of stem cell self-renewal.
Collapse
Affiliation(s)
- Anna B Zike
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Madison G Abel
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sophie A Fleck
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Emily D DeWitt
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Lesley N Weaver
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Simmons C, Williams IH, Bradshaw TW, Armstrong AR. Adipocyte-Derived CCHamide-1, Eiger, Growth-Blocking Peptide 3, and Unpaired 2 Regulate Drosophila melanogaster Oogenesis. Biomolecules 2025; 15:513. [PMID: 40305230 PMCID: PMC12024527 DOI: 10.3390/biom15040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
In addition to energy storage, adipose tissue communication to other organs plays a key role in regulating organismal physiology. While the link between adipose tissue dysfunction and pathophysiology, including diabetes, chronic inflammation, and infertility, is clear, the molecular mechanisms that underlie these associations have not been fully described. We use Drosophila melanogaster as a model to better understand how adipose tissue communicates to the ovary. In this study, we utilized D. melanogaster's robust genetic toolkit to examine the role of five adipokines known to control larval growth during development, CCHamide-1, CCHamide-2, eiger, Growth-blocking peptide 3, and unpaired 2 in regulating oogenesis. We show that the adult fat body expresses these "larval" adipokines. Our data indicate that ovarian germline stem cell maintenance does not require these adipokines. However, adipocyte-derived CCHamide-1, eiger, Growth-blocking peptide 3, and unpaired 2 influence early and late germline survival as well as ovulation. Thus, this work uncovers several adipokines that mediate fat-to-ovary communication.
Collapse
Affiliation(s)
| | | | | | - Alissa Richmond Armstrong
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA; (C.S.); (I.H.W.); (T.W.B.)
| |
Collapse
|
3
|
Anbarci DN, McKey J, Levic DS, Bagnat M, Capel B. Rediscovering the rete ovarii, a secreting auxiliary structure to the ovary. eLife 2025; 13:RP96662. [PMID: 40105200 PMCID: PMC11922502 DOI: 10.7554/elife.96662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray's Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.
Collapse
Affiliation(s)
- Dilara N Anbarci
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Jennifer McKey
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Daniel S Levic
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
4
|
Zike AB, Abel MG, Fleck SA, DeWitt ED, Weaver LN. Estrogen-Related Receptor is Required in Adult Drosophila Females for Germline Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635514. [PMID: 40034644 PMCID: PMC11875244 DOI: 10.1101/2025.01.29.635514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Stem cell self-renewal and proper tissue function rely on conserved metabolic regulators to balance energy production with inter-organ metabolic trafficking. The estrogen-related receptor (ERR) subfamily of orphan nuclear receptors are major transcriptional regulators of metabolism. In mammals, ERRs have roles in regulating mitochondrial biosynthesis, lipid metabolism, as well as stem cell maintenance. The sole Drosophila ERR ortholog promotes larval growth by establishing a metabolic state during the latter half of embryogenesis. In addition, ERR is required in adult Drosophila males to coordinate glycolytic metabolism with lipid synthesis and within the testis to regulate spermatogenesis gene expression and fertility. Despite extensive work characterizing of the role of ERR in Drosophila metabolism, whether ERR has a conserved requirement in regulating stem cell behavior has been understudied. To determine whether ERR regulates stem cell activity in Drosophila, we used the established adult female germline stem cell (GSC) lineage as a model. We found that whole-body ERR knockout in adult females using conditional heat shock-driven FLP-FRT recombination significantly reduces egg production and decreases GSC number. In addition, we found that ERR activity is required cell-autonomously in the adult female germline for maintenance of GSCs; whereas ERR regulation of GSCs is independent of its activity in adult female adipocytes. Our results highlight an ancient and conserved role for ERRs in the regulation of stem cell self-renewal.
Collapse
Affiliation(s)
- Anna B. Zike
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madison G. Abel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sophie A. Fleck
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Emily D. DeWitt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Lesley N. Weaver
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Hikawa N, Kashio S, Miura M. Mating-induced increase of kynurenine in Drosophila ovary enhances starvation resistance of progeny. J Biol Chem 2024; 300:105663. [PMID: 38246353 PMCID: PMC10882137 DOI: 10.1016/j.jbc.2024.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The maternal nutritional environment can impact progeny development, stress tolerance, and longevity. Such phenotypic variation of offspring resulting from the maternal environment is often referred to as the 'maternal effect' and is observed across taxa, including in humans. While some mechanisms behind maternal effects have been revealed, such as histone modification, many studies rely on drastic genetic or nutritional manipulation in describing these mechanisms. Here we aimed to reveal how the maternal environment is regulated under physiological conditions to affect the progeny. Specifically, we detailed metabolic regulation in oocytes in response to mating using Drosophila melanogaster fruit flies. Using liquid chromatography-mass spectrometry, we found that upon mating, the ovary metabolites shifted, predominantly toward increasing amino acids and the tryptophan/kynurenine (Kyn) pathway. This mating-induced increase in ovary Kyn was driven by increased Kyn production in the fat body, a functional counterpart of the mammalian liver and white adipose tissue and the source of Kyn storage for the ovary after mating. Furthermore, we show that maternal Kyn repression decreased the starvation resistance of progeny and that administering exogenous Kyn to the maternal generation enhanced the starvation resistance of female progeny. Taken together, these findings point to a previously unidentified role of fat body Kyn distribution during reproduction on progeny survival.
Collapse
Affiliation(s)
- Naoto Hikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
6
|
Fausett SR, Sandjak A, Billard B, Braendle C. Higher-order epistasis shapes natural variation in germ stem cell niche activity. Nat Commun 2023; 14:2824. [PMID: 37198172 DOI: 10.1038/s41467-023-38527-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
To study how natural allelic variation explains quantitative developmental system variation, we characterized natural differences in germ stem cell niche activity, measured as progenitor zone (PZ) size, between two Caenorhabditis elegans isolates. Linkage mapping yielded candidate loci on chromosomes II and V, and we found that the isolate with a smaller PZ size harbours a 148 bp promoter deletion in the Notch ligand, lag-2/Delta, a central signal promoting germ stem cell fate. As predicted, introducing this deletion into the isolate with a large PZ resulted in a smaller PZ size. Unexpectedly, restoring the deleted ancestral sequence in the isolate with a smaller PZ did not increase-but instead further reduced-PZ size. These seemingly contradictory phenotypic effects are explained by epistatic interactions between the lag-2/Delta promoter, the chromosome II locus, and additional background loci. These results provide first insights into the quantitative genetic architecture regulating an animal stem cell system.
Collapse
Affiliation(s)
- Sarah R Fausett
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France.
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA.
| | - Asma Sandjak
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | |
Collapse
|
7
|
Chen J, Wu YC, Chen JK, Zhu XJ, Merkler D, Liao CH, Han Q. Elongases of Long-Chain Fatty Acids ELO2 and ELO9 Are Involved in Cuticle Formation and Function in Fecundity in the Yellow Fever Mosquito, Aedes aegypti. INSECTS 2023; 14:189. [PMID: 36835758 PMCID: PMC9961117 DOI: 10.3390/insects14020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Long-chain fatty acid elongases (ELOs) play important roles in the metabolism of fatty acids in insects. In this study, the genes for two elongases from Aedes aegypti were identified, AeELO2 and AeELO9. Quantitative real time PCR showed that AeELO2 and AeELO9 are expressed at all developmental stages and some body parts, but with different expression patterns. RNAi-mediated knockdown of AeELO2 and AeELO9 was performed to investigate their roles in the development, growth, osmotic balance, and cold tolerance of Ae. aegypti. Knockdown of AeELO2 slowed larval growth and development by causing molting abnormalities. Additionally, 33% ± 3.3% of adults died during oviposition, accompanied by an abnormal extension of cuticles in AeELO2-dsRNA knockdown mosquitos. Knockdown of AeEL09 resulted in abnormal balance of cuticular osmotic pressure and a reduction in egg production. The maximal mRNAs of AeELO2 and AeELO9 were detected in eggs at 72 h after oviposition. Moreover, AeELO2 knockdown reduced the egg hatching rates and AeELO9 knockdown larvae did not develop well. In summary, AeELO2 is involved in larval molting and growth, and its knockdown affects the flexibility and elasticity of adult mosquito cuticles. AeELO9 regulates cold tolerance, osmotic balance, and egg development in Ae. aegypti.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Yu-Chen Wu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Jiu-Kai Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Xiao-Jing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - David Merkler
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Cheng-Hong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Shi C, Murphy CT. piRNAs regulate a Hedgehog germline-to-soma pro-aging signal. NATURE AGING 2023; 3:47-63. [PMID: 37118518 PMCID: PMC10154208 DOI: 10.1038/s43587-022-00329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2022] [Indexed: 04/30/2023]
Abstract
The reproductive system regulates somatic aging through competing anti- and pro-aging signals. Germline removal extends somatic lifespan through conserved pathways including insulin and mammalian target-of-rapamycin signaling, while germline hyperactivity shortens lifespan through unknown mechanisms. Here we show that mating-induced germline hyperactivity downregulates piRNAs, in turn desilencing their targets, including the Hedgehog-like ligand-encoding genes wrt-1 and wrt-10, ultimately causing somatic collapse and death. Germline-produced Hedgehog signals require PTR-6 and PTR-16 receptors for mating-induced shrinking and death. Our results reveal an unconventional role of the piRNA pathway in transcriptional regulation of Hedgehog signaling and a new role of Hedgehog signaling in the regulation of longevity and somatic maintenance: Hedgehog signaling is controlled by the tunable piRNA pathway to encode the previously unknown germline-to-soma pro-aging signal. Mating-induced piRNA downregulation in the germline and subsequent Hedgehog signaling to the soma enable the animal to tune somatic resource allocation to germline needs, optimizing reproductive timing and survival.
Collapse
Affiliation(s)
- Cheng Shi
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA.
| | - Coleen T Murphy
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Weaver LN. Analysis of Physiological Control of Adult Drosophila Oogenesis by Interorgan Communication. Methods Mol Biol 2023; 2626:89-107. [PMID: 36715901 DOI: 10.1007/978-1-0716-2970-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tissue homeostasis is dependent on the interaction between various organs within an organism in response to physiological inputs. The adult Drosophila melanogaster ovary is sensitive to environmental challenges and has recently been shown to be regulated by signaling from peripheral organs. To dissect the intricate coordination between overall organism health and reproduction, it is necessary to meticulously characterize both experimental tools and oogenesis processes. This chapter provides a guide for the careful analysis of interorgan communication in regulating oogenesis in adult Drosophila melanogaster.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
10
|
Simmons C, Bradshaw TW, Armstrong AR. Methods to Analyze Nutritional and Inter-Organ Control of Drosophila Ovarian Germline Stem Cells. Methods Mol Biol 2023; 2677:81-97. [PMID: 37464236 DOI: 10.1007/978-1-0716-3259-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Physiological status, particularly dietary input, has major impacts on the Drosophila melanogaster ovarian germline stem cell lineage. Moreover, several studies have shed light on the role that inter-organ communication plays in coordinating whole-organism responses to changes in physiology. For example, nutrient-sensing signaling pathways function within the fat body to regulate germline stem cells and their progeny in the ovary. Together with its incredible genetic and cell biological toolkits, Drosophila serves as an amenable model organism to use for uncovering molecular mechanisms that underlie physiological control of adult stem cells. In this methods chapter, we describe a general dietary manipulation paradigm, genetic manipulation of adult adipocytes, and whole-mount ovary immunofluorescence to investigate physiological control of germline stem cells.
Collapse
Affiliation(s)
- Chad Simmons
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Tancia W Bradshaw
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Alissa R Armstrong
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
11
|
Spradling AC, Niu W, Yin Q, Pathak M, Maurya B. Conservation of oocyte development in germline cysts from Drosophila to mouse. eLife 2022; 11:83230. [PMID: 36445738 PMCID: PMC9708067 DOI: 10.7554/elife.83230] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Wanbao Niu
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Qi Yin
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Madhulika Pathak
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Bhawana Maurya
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| |
Collapse
|
12
|
Russell SA, Laws KM, Bashaw GJ. Frazzled/Dcc acts independently of Netrin to promote germline survival during Drosophila oogenesis. Development 2021; 148:dev199762. [PMID: 34910816 PMCID: PMC8722396 DOI: 10.1242/dev.199762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Dorogova NV, Zubkova AE, Fedorova ЕV, Bolobolova ЕU, Baricheva ЕМ. [Lack of GAGA protein in Trl mutants causes massive cell death in Drosophila spermatogenesis and oogenesis]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:292-300. [PMID: 34901726 PMCID: PMC8627872 DOI: 10.18699/vj21.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Белок дрозофилы GAGA (GAF) является фактором эпигенетической регуляции транскрипции
большой группы генов с широким разнообразием клеточных функций. GAF кодируется геном Trithorax-like
(Trl), который экспрессируется в различных органах и тканях на всех стадиях онтогенеза дрозофилы. Мутации этого гена вызывают множественные нарушения развития. В предыдущих работах мы показали, что этот
белок необходим для развития половой системы как самцов, так и самок дрозофилы. Снижение экспрессии
гена Trl приводило ко множественным нарушениям спермато- и оогенеза. Одно из значительных нарушений было связано с массовой деградацией и потерей клеток зародышевого пути, что позволило предположить, что этот белок вовлечен в регуляцию клеточной гибели. В представленной работе мы провели более
детальное цитологическое исследование, чтобы определить, какой тип гибели клеток зародышевого пути
характерен для Trl-мутантов, и происходят ли нарушения или изменения этого процесса по сравнению с
нормой. Полученные результаты показали, что недостаток белка GAF вызывает массовую гибель клеток зародышевого пути как у самок, так и самцов дрозофилы, но проявляется эта гибель в зависимости от пола
по-разному. У самок, мутантных по гену Trl, фенотипически этот процесс не отличается от нормы и в гибнущих яйцевых камерах выявлены признаки апоптоза и аутофагии клеток зародышевого пути. У самцов, мутантных по гену Trl, в отличие от самок, не обнаружены признаки апоптоза. У самцов мутации Trl индуцируют
массовую гибель клеток через аутофагию, что не характерно для сперматогенеза дрозофилы и не описано
ранее ни в норме, ни у мутаций по другим генам. Таким образом, недостаток GAF у мутантов Trl приводит
к усилению апоптотической и аутофагической гибели клеток зародышевого пути. Эктопическая клеточная
гибель и атрофия зародышевой линии, вероятно, связаны с нарушением экспрессии генов-мишеней GAGAфактора, среди которых есть гены, регулирующие как апоптоз, так и аутофагию.
Collapse
Affiliation(s)
- N V Dorogova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A E Zubkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - Е V Fedorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Е U Bolobolova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Е М Baricheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Almeida-Oliveira F, Tuthill BF, Gondim KC, Majerowicz D, Musselman LP. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103569. [PMID: 33753225 DOI: 10.1016/j.ibmb.2021.103569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.
Collapse
Affiliation(s)
- Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Department of Biological Sciences, Binghamton University, USA
| | - Bryon F Tuthill
- Department of Biological Sciences, Binghamton University, USA
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
15
|
Weaver LN, Drummond-Barbosa D. Hormone receptor 4 is required in muscles and distinct ovarian cell types to regulate specific steps of Drosophila oogenesis. Development 2021; 148:dev.198663. [PMID: 33547134 DOI: 10.1242/dev.198663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The conserved nuclear receptor superfamily has crucial roles in many processes, including reproduction. Nuclear receptors with known roles in oogenesis have been studied mostly in the context of their ovary-intrinsic requirement. Recent studies in Drosophila, however, have begun to reveal new roles of nuclear receptor signaling in peripheral tissues in controlling reproduction. Here, we identified Hormone receptor 4 (Hr4) as an oogenesis regulator required in the ovary and muscles. Global Hr4 knockdown leads to increased germline stem cell (GSC) loss, reduced GSC proliferation, early germline cyst death, slowed follicle growth and vitellogenic follicle degeneration. Tissue-specific knockdown experiments uncovered ovary-intrinsic and peripheral tissue requirements for Hr4 In the ovary, Hr4 is required in the niche for GSC proliferation and in the germline for GSC maintenance. Hr4 functions in muscles to promote GSC maintenance and follicle growth. The specific tissues that require Hr4 for survival of early germline cysts and vitellogenic follicles remain unidentified. These results add to the few examples of muscles controlling gametogenesis and expand our understanding of the complexity of nuclear receptor regulation of various aspects of oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
17
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
18
|
Weaver LN, Drummond-Barbosa D. The Nuclear Receptor Seven Up Regulates Genes Involved in Immunity and Xenobiotic Response in the Adult Drosophila Female Fat Body. G3 (BETHESDA, MD.) 2020; 10:4625-4635. [PMID: 33087412 PMCID: PMC7718730 DOI: 10.1534/g3.120.401745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023]
Abstract
The physiology of organisms depends on inter-organ communication in response to changes in the environment. Nuclear receptors are broadly expressed transcription factors that respond to circulating molecules to control many biological processes, including immunity, detoxification, and reproduction. Although the tissue-intrinsic roles of nuclear receptors in reproduction have been extensively studied, there is increasing evidence that nuclear receptor signaling in peripheral tissues can also influence oogenesis. We previously showed that the Drosophila nuclear receptor Seven up (Svp) is required in the adult fat body to regulate distinct steps of oogenesis; however, the relevant downstream targets of Svp remain unknown. Here, we took an RNA sequencing approach to identify candidate Svp targets specifically in the adult female fat body that might mediate this response. svp knockdown in the adult female fat body significantly downregulated immune genes involved in the first line of pathogen defense, suggesting a role for Svp in stimulating early immunity. In addition, we found that Svp transcriptionally regulates genes involved in each step of the xenobiotic detoxification response. Based on these findings, we propose a testable model in which Svp functions in the adult female fat body to stimulate early defense against pathogens and facilitate detoxification as part of its mechanisms to promote oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
19
|
Dorogova NV, Galimova YA, Bolobolova EU, Baricheva EM, Fedorova SA. Loss of Drosophila E3 Ubiquitin Ligase Hyd Promotes Extra Mitosis in Germline Cysts and Massive Cell Death During Oogenesis. Front Cell Dev Biol 2020; 8:600868. [PMID: 33240894 PMCID: PMC7680892 DOI: 10.3389/fcell.2020.600868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
The Drosophila hyperplastic disc (hyd) gene is the ortholog of mammalian tumor suppressor EDD, which is implicated in a wide variety of cellular processes, and its regulation is impaired in various tumors. It is a member of the highly conserved HECT family of E3 ubiquitin ligases, which directly attach ubiquitin to targeted substrates. In early works, it was shown that Drosophila Hyd may be a tumor suppressor because it is involved in the control of imaginal-disc cell proliferation and growth. In this study, we demonstrated that Hyd is also important for the regulation of female germ cell proliferation and that its depletion leads to additional germline cell mitoses. Furthermore, we revealed a previously unknown Hyd function associated with the maintenance of germ cells' viability. A reduction in hyd expression by either mutations or RNA interference resulted in large-scale germ cell death at different stages of oogenesis. Thus, the analysis of phenotypes arising from the hyd deficiency points to Hyd's role in the regulation of germline metabolic processes during oogenesis.
Collapse
Affiliation(s)
- Natalia V Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Yuliya A Galimova
- Department of the Regulation of Genetic Processes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Elena Us Bolobolova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Elina M Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Svetlana A Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| |
Collapse
|
20
|
Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 2020; 117:20015-20026. [PMID: 32759216 PMCID: PMC7443898 DOI: 10.1073/pnas.2005570117] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper improves knowledge of the somatic and germ cells of the developing mouse ovary that assemble into ovarian follicles, by determining cellular gene expression, and tracing lineage relationships. The study covers the last week of fetal development through the first five days of postnatal development. During this time, many critically important processes take place, including sex determination, follicle assembly, and the initial events of meiosis. We report expression differences between pregranulosa cells of wave 1 follicles that function at puberty and wave 2 follicles that sustain fertility. These studies illuminate ovarian somatic cells and provide a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicle formation. We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.
Collapse
|
21
|
Luo W, Veeran S, Wang J, Li S, Li K, Liu SN. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. INSECT SCIENCE 2020; 27:665-674. [PMID: 31207060 DOI: 10.1111/1744-7917.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr-h1 double-stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr-h1 by Nos-Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sethuraman Veeran
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Tang R, Jiang Z, Chen F, Yu W, Fan K, Tan J, Zhang Z, Liu X, Li P, Yuan K. The Kinase Activity of Drosophila BubR1 Is Required for Insulin Signaling-Dependent Stem Cell Maintenance. Cell Rep 2020; 31:107794. [PMID: 32579921 DOI: 10.1016/j.celrep.2020.107794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/29/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
As a core component of the mitotic checkpoint complex, BubR1 has a modular organization of molecular functions, with KEN box and other motifs at the N terminus inhibiting the anaphase-promoting complex/cyclosome, and a kinase domain at the C terminus, whose function remains unsettled, especially at organismal levels. We generate knock-in BubR1 mutations in the Drosophila genome to separately disrupt the KEN box and the kinase domain. All of the mutants are homozygously viable and fertile and show no defects in mitotic progression. The mutants without kinase activity have an increased lifespan and phenotypic changes associated with attenuated insulin signaling, including reduced InR on the cell membrane, weakened PI3K and AKT activity, and elevated expression of dFoxO targets. The BubR1 kinase-dead mutants have a reduced cap cell number in female germaria, which can be rescued by expressing a constitutively active InR. We conclude that one major physiological role of BubR1 kinase in Drosophila is to modulate insulin signaling.
Collapse
Affiliation(s)
- Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weiyu Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Kaijing Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Pishun Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; Center for Clinical Biorepositories and Biospecimens, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Weaver LN, Drummond-Barbosa D. The nuclear receptor seven up functions in adipocytes and oenocytes to control distinct steps of Drosophila oogenesis. Dev Biol 2019; 456:179-189. [PMID: 31470019 PMCID: PMC6884690 DOI: 10.1016/j.ydbio.2019.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 02/09/2023]
Abstract
Reproduction is intimately linked to the physiology of an organism. Nuclear receptors are widely expressed transcription factors that mediate the effects of many circulating molecules on physiology and reproduction. While multiple studies have focused on the roles of nuclear receptors intrinsically in the ovary, it remains largely unknown how the actions of nuclear receptors in peripheral tissues influence oogenesis. We identified the nuclear receptor encoded by svp as a novel regulator of oogenesis in adult Drosophila. Global somatic knockdown of svp reduces egg production by increasing GSC loss, death of early germline cysts, and degeneration of vitellogenic follicles. Tissue-specific knockdown experiments revealed that svp remotely controls these different steps of oogenesis through separate mechanisms involving distinct tissues. Specifically, adipocyte-specific svp knockdown impairs GSC maintenance and early germline cyst survival, whereas oenocyte-specific svp knockdown increases the death of vitellogenic follicles without any effects on GSCs or early cysts. These results illustrate that nuclear receptors can control reproduction through a variety of mechanisms involving peripheral tissues.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
25
|
Basar MA, Williamson K, Roy SD, Finger DS, Ables ET, Duttaroy A. Spargel/dPGC-1 is essential for oogenesis and nutrient-mediated ovarian growth in Drosophila. Dev Biol 2019; 454:97-107. [PMID: 31251895 DOI: 10.1016/j.ydbio.2019.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
Dietary proteins are crucial for oogenesis. The Target of Rapamycin (TOR) is a major nutrient sensor controlling organismal growth and fertility, but the downstream effectors of TOR signaling remain largely uncharacterized. We previously identified Drosophila Spargel/dPGC-1 as a terminal effector of the TOR-TSC pathway, and now report that Spargel connects nutrition to oogenesis. We found that Spargel is expressed predominantly in the ovaries of adult flies, and germline spargel knockdown inhibits cyst growth, ultimately leading to egg chamber degeneration and female sterility. In situ staining demonstrated nuclear localization of Spargel in the nurse cells and follicle cells of the ovariole. Furthermore, Spargel/dPGC-1 expression is influenced by dietary yeast concentration and TOR signaling, suggesting Spargel/dPGC-1 might transmit nutrient-mediated signals into ovarian growth. We propose that potentiating Spargel/dPGC-1 expression in the ovary is instrumental in nutrient-mediated regulation of oogenesis.
Collapse
Affiliation(s)
- Mohammed Abul Basar
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Kishana Williamson
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Swagota D Roy
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA
| | - Danielle S Finger
- Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, Greenville, NC, 27858, USA
| | - Atanu Duttaroy
- Department of Biology, Howard University, 415 College Street, NW, Washington, DC, 20059, USA.
| |
Collapse
|
26
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
27
|
Aggarwal DD, Rybnikov S, Cohen I, Frenkel Z, Rashkovetsky E, Michalak P, Korol AB. Desiccation-induced changes in recombination rate and crossover interference in Drosophila melanogaster: evidence for fitness-dependent plasticity. Genetica 2019; 147:291-302. [PMID: 31240599 DOI: 10.1007/s10709-019-00070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Sviatoslav Rybnikov
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Irit Cohen
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Zeev Frenkel
- Department of Mathematics and Computational Science, Ariel University, 40700, Ariel, Israel
| | | | - Pawel Michalak
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel. .,Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
28
|
Yoshinari Y, Kurogi Y, Ameku T, Niwa R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:14-19. [PMID: 31109668 DOI: 10.1016/j.cois.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshitomo Kurogi
- College of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
29
|
Weaver LN, Drummond-Barbosa D. Maintenance of Proper Germline Stem Cell Number Requires Adipocyte Collagen in Adult Drosophila Females. Genetics 2018; 209:1155-1166. [PMID: 29884747 PMCID: PMC6063239 DOI: 10.1534/genetics.118.301137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches and are regulated by a variety of physiological inputs. Adipocytes influence whole-body physiology and stem cell lineages; however, the molecular mechanisms linking adipocytes to stem cells are poorly understood. Here, we report that collagen IV produced in adipocytes is transported to the ovary to maintain proper germline stem cell (GSC) number in adult Drosophila females. Adipocyte-derived collagen IV acts through β-integrin signaling to maintain normal levels of E-cadherin at the niche, thereby ensuring proper adhesion to GSCs. These findings demonstrate that extracellular matrix components produced in adipocytes can be transported to and incorporated into an established adult tissue to influence stem cell number.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
30
|
Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 2018; 440:31-39. [PMID: 29729259 DOI: 10.1016/j.ydbio.2018.04.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Tissue-specific stem cells are tied to the nutritional and physiological environment of adult organisms. Adipocytes have key endocrine and nutrient-sensing roles and have emerged as major players in relaying dietary information to regulate other organs. For example, previous studies in Drosophila melanogaster revealed that amino acid sensing as well as diet-dependent metabolic pathways function in adipocytes to influence the maintenance of female germline stem cells (GSCs). How nutrient-sensing pathways acting within adipocytes influence adult stem cell lineages, however, is just beginning to be elucidated. Here, we report that insulin/insulin-like growth factor signaling in adipocytes promotes GSC maintenance, early germline cyst survival, and vitellogenesis. Further, adipocytes use distinct mechanisms downstream of insulin receptor activation to control these aspects of oogenesis, all of which are independent of FOXO. We find that GSC maintenance is modulated by Akt1 through GSK-3β, early germline cyst survival is downstream of adipocyte Akt1 but independent of GSK-3β, and vitellogenesis is regulated through an Akt1-independent pathway in adipocytes. These results indicate that, in addition to employing different types of nutrient sensing, adipocytes can use distinct axes of a single nutrient-sensing pathway to regulate multiple stages of the GSC lineage in the ovary.
Collapse
|
31
|
Pekar O, Ow MC, Hui KY, Noyes MB, Hall SE, Hubbard EJA. Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development 2017; 144:2896-2906. [PMID: 28811311 DOI: 10.1242/dev.147660] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
Abstract
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFβ signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFβ causes a DAF-1/TGFβR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFβ signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFβ signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
Collapse
Affiliation(s)
- Olga Pekar
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Kailyn Y Hui
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Sarah E Hall
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|